
(MTH5109) GEOMETRY II: KNOTS AND SURFACES
LECTURE NOTES
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1. Introduction to Curves and Surfaces

In this module, we are interested in studying the geometry of objects. According to our favourite
source Wikipedia [9], geometry is the branch of mathematics concerned with studying the “shapes”,
“sizes”, and “positions” of objects. Throughout this term, you will develop a better understanding
of these concepts, as well as explore how these can be quantified and computed.

In your mathematical education up to this point—for instance, in calculus and linear algebra—
you have considered flat, linear spaces such as the real line (R), the plane (R2), and more general
n-dimensional spaces (Rn). This module will expand your outlook to “curved” objects.

1.1. Some Burning Questions. Before launching into more involved mathematical discussions,
we first address some common questions that you may have regarding this module, its contents
and features, and how it fits into your overall maths education.

Question 1.1. Why would we want to study curved objects?

Curved objects are everywhere in our lives.
• If you throw a ball or shoot a missile into the air, then the trajectory of the ball or missile

will not be linear, but rather a curve (due to gravity, for example).
• The surface of the earth is not flat, but rather like a sphere. To study this surface as

a whole, we have to understand the effects of its curvature. This is important for many
questions, such as determining the shortest flight path between two cities.

• According to Einstein’s landmark theory of general relativity, the universe that we inhabit
is not flat, but rather a 4-dimensional curved object (“spacetime”). Moreover, gravity itself
is modelled by the shape and curvature of the spacetime.

These are only a small sample of motivations for having a firmer understanding of geometry.
However, since this is an elementary module, and since we have limited time, we will only discuss:

• 1-dimensional objects: curves.
• 2-dimensional objects: surfaces.

4-dimensional spacetimes and gravity will have to wait until another module; if you are interested
in such things, you should consider the third-year module MTH6132: Relativity.

Question 1.2. What maths will we use in this module? In other words, what should I know?

This module is mainly concerned with the differential geometry of curves and surfaces. In
particular, we look at objects that are “without jagged edges” and “vary smoothly enough” so that
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one can take derivatives, or linear approximations. In addition, to measure the sizes—e.g. length
and area—of objects, we will need need to compute various integrals.

As a result, this module will assume that you have moderate familiarity with first-year calculus,
for which differentiation and integration are two cornerstones.

• When studying 1-dimensional curves, we will make frequent use of single-variable calculus
(mainly contents from MTH4100/4200: Calculus I).

• When studying 2-dimensional surfaces, we will require some knowledge of partial derivatives
and double integrals (both of which you encountered in MTH4101/4201: Calculus II).

The simplest objects we can consider are lines and planes; these fall under the study of linear
algebra. In particular, we will sometimes reference a bit of background on vectors and matrices:

• As we are working in one and two dimensions, the linear algebra background you need
should have been covered in MTH4103/4203: Geometry I.

• Most of you are also currently learning this in more detail in MTH5112: Linear Algebra I.
Even for more complex curved objects, a useful tool in their analysis is linearisation—first deter-
mining and studying the linear object that best approximates it. Thus, we cannot really escape
the need to understand linear algebra and its connections to geometry.

Finally, in order to construct common examples, we will make use of many elementary functions:
• Polynomials (e.g. t2 + 1), and rational functions.
• Trigonometric functions (sin, cos).
• Exponential functions (exp) and logarithmic functions (ln).
• Rarely, we may encounter others, such as hyperbolic functions (sinh, cosh).

We will at times reference a few basic properties of these functions that you have learned before.
If you want to be optimally prepared for the material you will see in this module, it is recom-

mended that you revise the material in calculus and linear algebra you have previously learned.

Question 1.3. Help! What will I be expected to learn?

The main focus of the module is on the interface between some mathematics you have already
encountered—most notably, calculus and linear algebra—with concepts in geometry. For example,
you will be expected to understand how notions such as derivatives, integrals, vectors, and matrices
connect to the shapes and sizes of various objects you will encounter. This part of the knowledge
is largely conceptual in nature; it is more about understanding the material in a critical way rather
than memorising definitions, formulas, or algorithms.

As the module is also concerned with quantifying geometric properties, you will be expected to
demonstrate that you are capable with performing various types of computations. Again, these
computations will involve elements of calculus (e.g. derivatives and integrals) and linear algebra
(e.g. vector and matrix algebra). In addition, you will be expected to graph various curves and
surfaces, either in a plane or in space. While your hand-drawn figures need not be exquisite, you
will need to produce convincing and largely accurate depictions of these objects.

Finally, though we will encounter a number of proofs in our discussions, they will not be a
central focus of this module. In particular, you will not be asked to memorise and recite lengthy
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proofs of various results that you will encounter. On the other hand, you will be required to have
a basic understanding of why these results are true.

1.2. Some Informal Ideas. Here, we give a brief and informal introduction to the ideas we will
explore and the questions we will answer in this module. This is to get you to begin engaging and
thinking critically about basic concepts. More detailed discussions will be given in later chapters.

1.2.1. Shape and Curvature. Consider the three curves in the plane in Figure 1.1 below. You
probably already have a very strong intuitive feeling that the curve C1 is straight, while C2 and
C3 are curved. But, how might you mathematically describe this?

Moreover, driving along a road, you feel a difference between a sharp turn along a very curved
road and a smaller turn. Similarly, from the figure, you probably have a sense that C3 is “more
curved” than C2. But, how would you capture and quantify this mathematically?
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Figure 1.1. C1, C2, C3 are curves on a plane, while C4 is a curve in space.

Another question concerns the “direction” of curvature. For instance, continuing with the driving
analogy, you can distinguish between turning left and turning right. Similarly, for C2 and C3,
depending on which direction you traverse these curves, you would have an intuitive feeling of
whether the curve is bending anticlockwise or clockwise. Moreover, if the curve is situated in
3-dimensional space (for example, see the helix C4 in Figure 1.1), then there is an additional
dimension of directions that the curve could bend. Again, the question of interest is how we can
describe and quantify all of this mathematically.

Moving on to surfaces, the situation is similar but even more complicated. Consider, for instance,
the surfaces in Figure 1.2. Again, you can distinguish that S1 is flat, while S2, S3, and S4 are curved.
You can also tell when a surface is “very curved”, as opposed to “slightly curved”.

What is novel for these 2-dimensional surfaces, in contrast to 1-dimensional curves, is that
a surface can bend in different ways along different directions. For instance, at any point of the
spheres S2 and S3, the surfaces bend inward toward itself in the same way no matter which direction
you go. However, for the “saddle” S4, depending on which direction along the surface you look,
it could be bending in opposite directions. The mathematical challenge here, then, is to somehow
capture and quantify all this geometric information.
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Figure 1.2. S1, S2, S3, S4 are surfaces in 3-dimensional space.
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Figure 1.3. C1 and C2 are circles with
different circumferences.

1.2.2. Size, Length, and Area. Another aspect of ge-
ometry is studying the sizes of objects. Consider the
two circles in Figure 1.3. Your intuition already in-
dicates that while they both have similar circular
shape, they also have different sizes. You proba-
bly also have enough mathematical background to
know that you can capture this by measuring their
arc lengths (i.e., their circumferences).

There is an analogous sense of size for surfaces;
for instance, the spheres S2 and S3 in Figure 1.2
have similar shapes but different sizes. This can be
similarly captured by measuring their surface areas.

The mathematical goal, then, is to understand
how we define and compute these arc lengths and surface areas. From calculus, you should know
that lengths and areas are generally evaluated using integrals, and you should also know how to
integrate along a line segment or a (flat) region in a plane. The questions of arc length and surface
area will now force us to make sense of what it means to integrate along a curve or along a surface.

1.2.3. Intrinsic and Extrinsic Geometry. While we will not be particularly precise here, we will
also touch upon the following classification of geometric properties:

• Extrinsic properties are those that depend on how an object is situated in a larger space.
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• Intrinsic properties are of the object itself, regardless of how it is embedded in space.
For example, consider the unit circles in Figure 1.4. Clearly, these are different objects in terms

of extrinsic geometric properties; after all, C1 and C2 lie in a plane, while C3 lies in 3-dimensional
space. Moreover, while C1 and C2 are in the same plane, they are situated at different locations.
On the other hand, you probably have a sense that these three circles are somehow “the same”,
regardless of what larger space they sit in or where in the space they sit. This intuition is behind
the rough notion that the unit circles C1, C2, C3 “have the same intrinsic geometry”.
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Figure 1.4. Three unit circles in different locations and settings.

One thought experiment you can try to further explore intrinsic geometry is to imagine if you
are a bug living on one of these unit circles, with no knowledge of the larger dimensional space
that the circle is in. As this imperceptive bug that knows only of the circle itself, you would not
be able to distinguish between whether you were on C1, C2, or C3.
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Figure 1.5. Two infinite curves
that are extrinsically different but
intrinsically the same.

Similarly, two copies of the sphere S2 in Figure 1.2 in
different positions would be extrinsically distinct, but also
“the same” in a similar intrinsic sense.

For a more compelling example, consider the two
curves in Figure 1.5. Clearly, they are extrinsically dif-
ferent, since they are embedded very differently in the
plane. On the other hand, imagine again that you are
the provincial bug. On either C1 or C2, you have exactly
two options: move in one direction, or move in the other.
That C2 is bending and C1 is not is purely a feature of
how they are situated in the plane, and would not be evi-
dent to the bug that is unaware of the plane. As a result,
any infinite curve is intrinsically equivalent to a line!

In contrast, consider a bug on a circle (e.g. C1 in Figure
1.3) and a bug on a line (e.g. C1 in Figure 1.5. A bug on
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the circle that walked in one direction long enough would return to where it started, whereas a
bug on a line would not. Thus, one can argue that a line and a circle are intrinsically different.

Similarly, consider two circle with different radii, for instance, C1 and C2 in Figure 1.3. A bug
would again be able to distinguish between them, since a bug on C2 would need to travel less far
to loop back to the starting point than a bug on C1 would.

Exercise 1.1. What about non-circular loops, such as that in Figure 1.6? What geometric proper-
ties of these loops are intrinsic? Can you classify all such loops based on their intrinsic geometry?
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y

Figure 1.6. A non-circular loop.

For surfaces, the full story is far more complex, since
the existence of an extra dimension allows for many more
intrinsic properties. We will study some interesting ones
later in the module. In contrast to curves, some aspects
of how a surface is curved are in fact intrinsic!

Unfortunately, we will not have the time in this module
to precisely define what we mean by “intrinsic” and “ex-
trinsic”. (These notions are formally captured by mathe-
matical objects known as manifolds.) However, this dis-
cussion is meant to encourage you to think critically along
these lines and to keep these notions in mind as we discuss
various geometric properties in detail.

1.2.4. Topology. Consider now the sphere S2 in Figure
1.2 and the “egg” S1 in Figure 1.7. Clearly, the sphere and the egg have different geometries (in
fact, both extrinsically and intrinsically). On the other hand, there is an even weaker sense that
these two surface are “the same”. One way to think of this is that, if you visualise the objects as
elastic, then you can stretch and compress the sphere in order to “deform” it into the egg.
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Figure 1.7. An ellipsoid (S1) and a torus (S2).

Consider in addition the “doughnut” S2 in Figure 1.7. In this same sense of deformations, the
doughnut is distinct from the sphere and the egg. Indeed, you cannot deform the sphere into the
doughnut as you did into the egg; for this, you would have to be much more drastic by “poking
your finger through the sphere” and puncturing a hole. However, you can “deform” this doughnut
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into the “coffee mug” on the left-hand side of Figure 1.8 (as clumsily indicated in that same figure).
In this weaker sense, the doughnut and coffee mug are “the same”.

Figure 1.8. Deforming a coffee cup into a doughnut!

These intuitions are closely tied to an area of mathematics known as topology. While we will
not have the time to formally delve into topology, we will in this module encounter some properties
that are topological in nature. In other words, these properties do not depend on the shape or size
of the object, but on other more basic features, such as how many holes a surface has.

One particular application of topology, in the one-dimensional setting, is to study and classify
knots. In what ways can you tie a rope into a knot? When are two knots the same? Where
topology enters is that intuitively, what matters here is “how the rope wraps around itself”, and
not the exact shape of this wrapping. Time permitting, we will discuss some elementary aspects
of this knot theory near the end of the module.
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2. The Calculus of Curves

The first part of the module will focus on the differential geometry of curves. This chapter
initiates this discussion by introducing some basic aspects of doing calculus on curves.

You probably already have a fairly solid intuition for what a curve should be. You may visualise
a curve as a string tracing out some path. Or, perhaps you think of a curve as a trajectory traced
out by a particle over time. As written, these intuitions are too vague for a careful mathematical
study. Therefore, the first major question we will need to address is the following:

Question 2.1. When we say “curve”, what exactly do we mathematically mean?

2.1. Parametric Curves. Let us begin with the perspective of a trajectory of a moving particle.
We consider a variable t, which we can think of as representing “time”, and we let γ(t) denote the
position of the particle at a given time t. In other words, we view the trajectory as a function γ
mapping a real number t to its position in R2 (a plane) or R3 (space). This is precisely the notion
of parametric curves that you have probably encountered before:

Definition 2.1. A parametric curve, or parametrisation, is a smooth function γ : I→ Rn, where
n is a positive integer, and where I is an open (finite or infinite) interval.

By smooth, we mean that we can take as many derivatives of γ as we like (we will discuss
differentiation in further detail below). In other words, γ contains no sudden instantaneous change
of direction, speed, acceleration, and so on. We also note that the open interval I, which can be
either finite or infinite, is allowed to be any of the forms

I = (a, b), I = (−∞, b), I = (a,∞), I = R.

Moreover, since I is 1-dimensional, then the path traced out by γ is intuitively also “1-dimensional”.
Also, if you wish to be more concrete, you can assume n = 2 (curve in a plane) or n = 3 (curve

in space) in Definition 2.1. Conceptually, it really is not any different to consider curves embedded
in higher dimensions (n > 3); it is just more difficult to visualise and draw.
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Figure 2.1. The parametric curves ℓ and γ from Example 2.1.

Example 2.1. The following two functions are parametric curves:
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(1) x-axis (line):
ℓ : R → R3, ℓ(t) = (t, 0, 0).

(2) Circle:
γ : R → R2, γ(t) = (cos t, sin t).

Their graphs are given in Figure 2.1.

Now that we have our formal definition, we can begin to evaluate it critically: do parametrised
curves give an appropriate definition of curves for studying geometry?

Example 2.2. Consider the following two parametric curves:

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t),

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2).

Clearly γ1, γ2 are different functions, hence they represent different parametric curves. However,
Figure 2.2 shows that they graph out exactly the same points, and in the same order.
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Figure 2.2. γ1, γ2 from Exam-
ple 2.2 describe the same curve.

If you think of γ1, γ2 as travelling particles, then this
means that these two particles are traversing the same path
at different speeds. From this perspective, it is sensible to
think of γ1 and γ2 as distinct. This viewpoint would be
relevant in various physics problems, where one investigates
the motion in time of various particles.

On the other hand, here we are concerned with geome-
try, i.e. the shapes, sizes, and positions of objects. In terms
of just these considerations, γ1 and γ2 are not any differ-
ent at all, since both trace out the same points (and in the
same order). Thus, the viewpoint of curves as particle tra-
jectories falsely distinguishes two objects, γ1 and γ2, that
should instead be “the same” for our geometric purposes.

With these thoughts in mind, our current verdict on Question 2.1 is now summarised as follows:
• Any parametric curve, such as γ1 or γ2 in Example 2.2, defines a curve. On the other hand,

we also want to view γ1 and γ2 as two different parametrisations of the same curve.
• More generally, any parametric curve describes a curve, while a single curve can be described

by many different parametrisations.
Consequently, the idea is to characterise curves as parametric curves, with the caveat that two
such parametric curves that trace out the same path are considered the same. Before we define
this formally, however, we require some further background regarding differentiation.

2.1.1. Derivatives. Consider a parametric curve γ : I→ Rn, which we again view as a position of
particle over time, and fix a “time” t0 ∈ I. To motivate the connection to differentiation, we ask,
as one usually does in calculus, the following question:

Question 2.2. What is the rate of change of γ at t0?
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In physics, if γ represents the position of a particle over time, then its rate of change is called
the velocity of the particle. As such, we often use the term “velocity” in place of “rate of change”.

Now, if t ∈ I as well, then the vector γ(t) − γ(t0) can be viewed as the displacement, or the
total change in position, between times t and t0. This is visually represented in the first part of
Figure 2.3 below; the green arrows indicate displacements over various time intervals. Moreover,
t − t0 is the total time elapsed during this displacement. In general, dividing the total change in
position by the change in time yields the rate of change in position. Therefore, the quotient

(2.1) γ(t) − γ(t0)

t− t0
,

represents the average rate of change in γ (or average velocity of γ) over the time interval [t0, t].
Letting t become closer and closer to t0, so that the elapsed time t − t0 tends to 0, then (2.1)

would become the instantaneous rate of change of γ at the single time t0.
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Figure 2.3. The parametric curve γ(t) = 1
2
x2 − 1 is drawn in red above.

The green arrows indicate the vectors γ(t) − γ(−1) for various values of t
(starting from γ(−1)), while the purple arrows represent 1

t+1
[γ(t) − γ(−1)]

for the same values of t. Finally, the orange arrow represents the limits of
the blue arrows as t→ −1, which is precisely γ ′(−1).

As an example, for the parametric curve γ indicated in Figure 2.3, some average rates of change
near time t0 = −1 are given by blue arrows, while the instantaneous rate of change at t0 = −1

is indicated by the orange arrow. Notice in particular that the blue arrows become progressively
better approximations of the orange arrow as t→ −1.

This chain of reasoning has led to a familiar definition from calculus:

Definition 2.2. For a parametric curve γ : I→ Rn, we define the derivative of γ at t0 ∈ I to be

(2.2) γ ′(t0) = lim
t→t0

γ(t) − γ(t0)

t− t0
∈ Rn.

Moreover, we also use the term derivative of γ to refer to the function γ ′ : I→ Rn mapping each
t0 ∈ I to the vector γ ′(t0) defined in equation (2.2).
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In particular, from the discussions above, we see that the derivative γ ′ provides the solution to
Question 2.2, since γ ′(t) precisely measures the velocity of γ at time t.

2.1.2. Smoothness. One basic calculus question that must be addressed is whether the limit (2.2)
actually exists. More specifically, recall that a function is differentiable iff the limit that defines
the derivative exists. In our current setting, a parametric curve γ being differentiable means that
γ is “nice” enough so that the concept of instantaneous rate of change makes sense in the first
place. Of course, this needs not always be the case:

Example 2.3. Consider the function

λ : R → R2, λ(t) = (t, |t|).

Note that this λ fails to be differentiable at t = 0. In particular, if one travels along λ, then there
is an abrupt jump in the direction of λ at t = 0. Consequently, the (instantaneous) rate of change
at time t = 0 fails to be well-defined; see Figure 2.4.
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Figure 2.4. A plot of the function
λ from Example 2.3.

Note that if γ is differentiable, then Definition 2.2 is
applicable to γ ′, so we can ask whether γ ′ is also dif-
ferentiable. If so, then its derivative γ ′′ represents the
rate of change of γ ′. One can then repeat the process
indefinitely for additional higher-order derivatives of γ.

Definition 2.3. We say that λ : I → Rn is smooth iff
λ is infinitely differentiable, that is, any finite number of
derivatives of λ is itself differentiable.

Smooth parametric curves, for which one can always
take as many derivatives as one desires, are in a sense
the best behaved. Whenever γ is smooth, no derivative
of γ of any order will have any discontinuities or “jagged
edges” that prevent one measuring its rate of change.

Recall that by Definition 2.1, all parametric curves that
we consider in these notes are assumed to be smooth. This is primarily done for convenience, as
this module will only deal with objects that are differentiable. As a result, for the remainder of
this module, we will no longer stress about differentiability of functions.

2.1.3. Computing Derivatives. While we have now defined and assigned some physical intuition to
derivatives of parametric curves, we still have not discussed how to compute such derivatives.

Suppose, for concreteness, that γ : I→ R2, so that γ represents a trajectory in a plane. Since γ
takes, for any t ∈ I, two real values, we can express γ componentwise as

(2.3) γ(t) = (γ1(t), γ2(t)), γ1, γ2 : I→ R.

In particular, the functions γ1 and γ2 represent the x-coordinate and y-coordinate of γ, respectively.
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Now, recalling from linear algebra that both addition and scalar multiplication of vectors are
defined to apply componentwise, we have, for any t0, t ∈ I, that

γ(t) − γ(t0)

t− t0
=

1

t− t0
(γ1(t) − γ1(t0), γ2(t) − γ2(t0))

=

(
γ1(t) − γ1(t0)

t− t0
,
γ2(t) − γ2(t0)

t− t0

)
.

Moreover, as you may remember from multivariable calculus, limits of vector-valued functions can
also be applied componentwise. As a result, we obtain that

lim
t→t0

γ(t) − γ(t0)

t− t0
=

(
lim
t→t0

γ1(t) − γ1(t0)

t− t0
, lim
t→t0

γ2(t) − γ2(t0)

t− t0

)
.

In summary, the derivative of γ is the vector containing the derivatives of γ1 and γ2:

Proposition 2.1. Let γ : I→ R2 is a parametric curve, and suppose γ is expressed componentwise
as in (2.3). Then, given any t0 ∈ I, we have that

(2.4) γ ′(t0) = (γ ′
1(t0), γ

′
2(t0)).

Now, both γ1 and γ2 are real-valued functions of one real variable, so you know in principle how
to handle these from first-year calculus. In particular, you have a large number of tools and tricks
at your disposal (e.g. power rule, product rule, chain rule).

Example 2.4. Consider the parametric curve

γ : R → R2, γ(t) = (cos t, sin t).

Let us first compute its derivative. From Proposition 2.1, we see that to compute γ ′(t), we need
simply compute the derivatives of the components cos t and sin t of γ. Thus, recalling the formulas
from first-year calculus for the trigonometric functions cos and sin, we obtain

γ ′(t) =

(
d

dt
cos t, d

dt
sin t

)
= (− sin t, cos t).

To get a better visual sense of what is happening, we compute γ and γ ′ at various points:
t 0 π

4
π
2

3π
4

π

γ(t) (1, 0) ( 1√
2
, 1√

2
) (0, 1) (− 1√

2
, 1√

2
) (−1, 0)

γ ′(t) (0, 1) (− 1√
2
, 1√

2
) (−1, 0) (− 1√

2
,− 1√

2
) (0,−1)

The graph of γ, which maps out a unit circle, and the above values of γ ′ are drawn in the first
plot in Figure 2.5. Here, the velocity γ ′(0) = (0, 1) is drawn with its “tail” at γ(0) = (1, 0), which
should help you see that γ ′(0) indeed indicates the direction that γ is heading in at the point γ(0).
The other values of γ and γ ′ in the above table are also graphed in a similar manner.

While all of the preceding discussion involved parametric curves lying in a plane, the fact that
the ambient space is 2-dimensional really played no essential role. All of these results would apply
equally well to parametric curves embedded in a space of any dimension. Thus, below we state
the corresponding general formula for computing derivatives:
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Figure 2.5. The left plot contains a graph of γ from Example 2.4, while
the right plot contains a graph of γ from Example 2.5. Both plots contain
some sample values of γ(t) (in green) and γ ′(t) (in blue).

Theorem 2.2. Let γ : I→ Rn be a parametric curve, and express γ as

γ(t) = (γ1(t), γ2(t), . . . , γn(t)), γi : I→ R.

Then, for any t0 ∈ I,

(2.5) γ ′(t0) = (γ ′
1(t0), γ

′
2(t0), . . . , γ

′
n(t0)).

Example 2.5. Consider the parametric curve

γ : (0, 1) → R3, γ(t) = (t2 + 1, t, et).

Again, to find γ ′, we merely differentiate each component separately:

γ ′(t) =

(
d

dt
(t2 + 1),

d

dt
t,
d

dt
et
)

= (2t, 1, et).

A graph of γ and some samples of γ ′(t) are provided in the second plot of Figure 2.5.
To draw such graphs yourself, one can in general attempt the following steps:
(1) Compute γ(t) for some points and plot them; for this particular example, these points are

given by the green dots in the second plot in Figure 2.5. Once you have a large enough
sample of points, you should have a reasonably good idea of what γ looks like.

(2) You can then connect the points you have sampled in a reasonable manner; for this particular
example, this is indicated by the red path in the second plot of Figure 2.5. (If you are still
not sure how to “connect the dots”, you could also compute γ ′(t) at various points—the
blue arrows in Figure 2.5—to see which direction γ is going.)

2.1.4. Speed and Direction. Recall that given a vector

v = (v1, v2, . . . , vn) ∈ Rn,

we can decompose it into two distinct pieces of information:
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(1) The norm, or magnitude, of v,

(2.6) |v| =
√
v21 + v

2
2 + · · ·+ v2n,

which we can interpret as the length, or size, of v. Indeed, if we think of v as a directed
line segment from the origin to the point in space given by coordinates (v1, . . . , vn), then
by the Pythagorean theorem, (2.6) is precisely the length of this segment.

(2) Whenever v ̸= 0, the vector

(2.7) v
|v|

points in the same direction as v and has norm 1. In particular, (2.7) filters all the
information about length contained in v. Thus, we interpret this as the direction of v.

Now, recall that if a parametric curve γ : I → Rn models the motion of a particle over time,
then its derivative γ ′(t) represents its velocity at time t. Following the discussion above, the
velocity—how γ is changing—can be decomposed into two components:

(1) The norm |γ ′(t)|, which measures the “size” of γ ′(t), can be interpreted as how fast γ is
changing. For this reason, we often refer to |γ ′(t)| as the speed of γ at time t.

(2) The unit vector |γ ′(t)|−1γ ′(t), on the other hand, captures the direction of γ at time t.

Example 2.6. Consider the parametric unit circle from Example 2.4 (see also Figure 2.5),

γ : R → R2, γ(t) = (cos t, sin t).

We compute its speed for each t ∈ R:

γ ′(t) = (− sin t, cos t), |γ ′(t)| =
√

(− sin t)2 + (cos t)2 = 1.

Thus, if we view γ as a particle trajectory (orbiting around the origin), then the above indicates
that the particle represented by γ is always moving with constant unit speed.

2.2. What is a Curve? Now that we have some basic working knowledge with parametric curves,
we return to the task of nailing down exactly what a “curve” is in our context. Recall that the
idea is to start with parametric curves and then identify those that map out the same path as
representing the same curve. Here, we make this process more formal.

2.2.1. Regular Parametrisations. Our intent here is to study the geometry of curves through para-
metric curves (i.e. parametrisations of the curve). Thus, it makes sense to only consider parametri-
sations that adequately capture a curve’s geometric contents. For instance, we wish to omit
parametrisations that go back and forth over a single point of the trajectory multiple times. Such
parametric curves would contain redundant geometric information whenever they pass by a point
more than once. Even more importantly, if we wish to compute the total length of a curve, as we
will later, then it is essential that we do not count any point more than once.

For instance, consider a parametric curve γ describing an object swinging along a pendulum,
as indicated in Figure 2.6. Since the pendulum swings back and forth, γ would vacillate between
going “forward” and “backward” along its trajectory. Consequently, if we wish to find the length
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of the arc of the pendulum, then measuring the total length of γ would produce the wrong answer,
since γ traverses parts of this arc multiple times.

γ

Figure 2.6. The red paths
show part of the trajectory γ
of the end of a pendulum.

As a result, here we impose an additional condition that ex-
cludes the “undesirable” parametric curves that are unsuitable
for studying geometric properties:

Definition 2.4. A parametric curve γ : I → Rn is called
regular iff |γ ′(t)| ̸= 0 for every t ∈ I.

Note that the condition in Definition 2.4 is in fact more
stringent than merely ruling out revisiting points. We also
exclude the scenario in which γ “stops” at some time t.

Example 2.7. The parametric unit circle from Example 2.4,

γ : R → R2, γ(t) = (cos t, sin t),

is regular, since we computed in Example 2.4 that |γ ′(t)| = 1 for any t ∈ R.

Example 2.8. Consider now the parametric curve

ℓ∗ : R → R3, γ(t) = (t3, 0, 0).

Note that ℓ∗ parametrises the x-axis as in the first plot of Figure 2.1.
If we compute its speed, we see that

ℓ ′∗(t) = (3t2, 0, 0), |ℓ ′∗(t)| = |3t2| = 3t2.

In particular, |ℓ ′∗(0)| = 0, so ℓ∗ fails to be regular.
We can contrast ℓ∗ with ℓ in Example 2.1, which maps out the same line. Since

|ℓ ′(t)| = |(1, 0, 0)| = 1 ̸= 0,

then ℓ is a regular parametric curve. Thus, for the purposes of studying geometry, ℓ provides a
more useful (and pleasant) parametrisation of the x-axis.

2.2.2. Reparametrisations. Recall now the two parametric curves from Example 2.2,

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t),

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2).

By graphing out γ1 and γ2, as was done in Figure 2.2, we saw that both parametric curves trace
out the upper half of the unit circle in the anticlockwise direction. We concluded from this that
γ1 and γ2 should be viewed as parametrising the same curve.

We now want to explore this fact more explicitly. Let us suppose we are extra clever and
magically know beforehand what has to be done: we adopt the change of variables

(2.8) t̃ = ϕ(t) = − cos(t).

Note that if the original parameter t lies within (0, π), then t̃ = − cos(t) takes values in (−1, 1).
Moreover, if one increases t, then t̃ also increases (though at a different rate). Thus, each value of
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t ∈ (0, π) is matched with exactly one value of t̃ ∈ (−1, 1). In more formal mathematical terms,
ϕ is a strictly increasing bijection between the intervals (0, π) and (−1, 1).

There is a very particular reason we chose this particular change of variables. Let us apply γ1
using the original parameter t and γ2 with the new parameter t̃. Then, a short computation yields

(2.9) γ2(t̃) = γ2(− cos t) =
(

cos t,
√
1− (− cos t)2

)
= (cos t, sin t) = γ1(t).

In other words, by switching t into t̃, we have transformed γ1 into γ2! Figure 2.7 highlights a few
points of this half-circle, in terms of both t and t̃.
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y γ1, γ2
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γ2(−
√
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γ2(
√
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γ2(1) x
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Figure 2.7. Two copies of the curve represented by both γ1 and γ2 (from
Example 2.2). The same five points on this curve are labelled (in green) in
two plots above, the first in terms of γ1, and the second in terms of γ2.

How might we interpret this? Recall that we could think of γ1 and γ2 as two different particles
traversing the same path at different speeds. For any point P along this path, the particle γ1
reaches P at some time t, while γ2 reaches P at some other time t̃. The change of variables ϕ is
simply the object that matches the time t for γ1 to the time t̃ for γ2. Indeed for the ϕ in (2.8),
the identity (2.9) shows that γ2(t̃) and γ1(t) represent the same point on the path.

Now, given two parametric curves γ and γ̃ tracing the same path, again by “matching the time
variables” using an appropriate bijection ϕ (equivalently, a change of variables t̃ = ϕ(t)), we can
identify how γ and γ̃ trace the same path. This motivates the following mathematical definition:

Definition 2.5. Let γ : I → Rn and γ̃ : Ĩ → Rn be parametric curves. We say that γ is a
reparametrisation of γ̃ iff there exists a bijection ϕ : I→ Ĩ between I and Ĩ such that

• Both ϕ and its inverse ϕ−1 are smooth.
• The following holds for all t ∈ I:

(2.10) γ̃(ϕ(t)) = γ(t).

Moreover, in the above context, we refer to ϕ as the corresponding change of variables.

Students who are unfamiliar with formal mathematical language are often intimidated by the
above definition, but there really is nothing to be afraid of. If we go back to the preceding intuition,
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and we think of ϕ(t) in (2.10) as the “transformed time” t̃, then (2.10) is simply a generalisation
of the relation found in (2.9). Definition 2.5 merely extends (2.9) to general parametric curves.

Similar to Example 2.2, one can think of reparametrisations as two parametric curves describing
the same curve. Indeed, Definition 2.5 can be reframed as stating that γ and γ̃ describe the same
curve whenever one has a “matching of times” (t↔ t̃) that identifies the trajectories of γ and γ̃.

Example 2.9. Consider the two parametric lines (see also Figure 2.8)

ℓ : R → R2, ℓ(t) = (t, 2t+ 1,−t),

ℓ̃ : R → R2, ℓ̃(t̃) = (2t̃− 1, 4t̃− 1,−2t̃+ 1).

We claim that ℓ is a reparametrisation of ℓ̃.
To show this, we must find the change of variables t → t̃ that identifies ℓ with ℓ̃. The most

straightforward way to do this is to solve ℓ(t) = ℓ̃(t̃) for a relation between t and t̃:

(t, 2t+ 1,−t) = ℓ(t) = ℓ̃(t̃) = (2t̃− 1, 4t̃− 1,−2t̃+ 1).

By looking at each component of the above, we obtain a system of three equations:

t = 2t̃− 1, 2t+ 1 = 4t̃− 1, − t = −2t̃+ 1.

By doing a bit of algebra, we see that these equations have a simultaneous solution,

(2.11) t̃ =
1

2
(t+ 1).

As a result, we have that ℓ(t) = ℓ̃(t̃) if we relate t̃ and t by (2.11). Thus, if we define

ϕ : R → R, ϕ(t) =
1

2
(t+ 1),

which is clearly a bijection between R and itself, then the above implies

ℓ̃(ϕ(t)) = ℓ̃(t̃) = ℓ(t),

that is, ℓ is indeed a reparametrisation of ℓ̃.
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Figure 2.8. Two copies of the line represented by ℓ and ℓ̃ from Example
2.9. Both plots contain three common points (indicated in green). The first
plot is labelled in terms of ℓ1, while the second is labelled in terms of ℓ2.
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Lastly, we remark that if γ is a reparametrisation of γ̃, in the sense of Definition 2.5, then γ̃ is
also a reparametrisation of γ. Indeed, if there is a change of variables t̃ = ϕ(t) satisfying (2.10),
then the reverse transformation t = ϕ−1(t̃) yields, as desired,

γ(ϕ−1(t̃)) = γ̃(ϕ(ϕ−1(t̃))) = γ̃(t̃).

Intuitively, this should not be the least bit surprising, since any reasonable definition of “γ and γ̃
represent the same curve” ought to certainly imply that “γ̃ and γ represent the same curve”.

2.2.3. Curves Revisited. We now have a formal notion of reparametrisation characterising when two
parametric curves describe the same curve. Thus, we can finally define curves as being represented
by parametric curves, with the caveat that reparametrisations represent the same curve. This can
be captured in a mathematically precise way through the notion of equivalence classes.

Definition 2.6. Consider the equivalence relation ∼ defined as follows: two parametric curves γ
and γ̃ satisfy γ ∼ γ̃ iff γ is a reparametrisation of γ̃. We then formally define a curve as an
equivalence class of regular parametric curves under the equivalence relation ∼.

Remark. From the preceding arguments, we already have that this relation ∼ is symmetric. It is
also not hard to see that ∼ is reflexive and transitive, and hence an equivalence relation.

Note that Definition 2.6 only considers regular parametric curves (see Definition 2.4). This is
for convenience, as there is no need to consider “undesirable” parametrisations in the first place.

Under Definition 2.6, a curve is formally the collection of parametric curves, all of which are
reparametrisations of each other. Indeed, this awkward construction fulfills our intuitions:

• If γ is a parametric curve, then its equivalence class [γ] is the curve represented by γ.
Conversely, a curve C is represented by any parametric curve γ that is in C.

• On the other hand, if γ and γ̃ describe the same curve, then they are reparametrisations
of each other. As a result, they are in the same equivalence class, and hence [γ] = [γ̃]

represents the common curve described by γ and γ̃.
Of course, no one in his or her right mind would actually communicate in terms of these equiv-

alence classes when describing curves. In practice, one works instead with parametric curves, with
the implicit understanding that the object of interest is the underlying equivalence class. The role
of Definition 2.6 is to provide a precise mathematical characterisation of exactly what a curve is.

Remark. We note that the definition we use for curves here is rather unorthodox. For example, the
term “curve” is often used elsewhere in the mathematical literature to refer to parametric curves.
Furthermore, more advanced texts will often use more general (and more technical) terminology,
such as manifolds and immersions. The use of Definition 2.6 reflects our intent to study geometric
properties of curves and our desire to maintain an elementary exposition.

For other characterisations of curves throughout mathematics, see the Wikipedia article [8].

2.3. Tangent Vectors and Lines. The remainder of this chapter is dedicated toward exploring
some basic geometric properties of curves. First, we must address the most basic question:

Question 2.3. What exactly do we mean by a “geometric property” of a curve?
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Intuitively speaking, we can view a geometric property as some attribute that is possessed by
every curve. To be more mathematically precise, we can formulate such a property as a function
mapping each curve in Rn to some value. One basic example is arc length, which we can think
as a function L mapping each curve C to the total length of C. (Spoiler: Arc length is indeed a
geometric property, as we shall see later in this chapter.)

2.3.1. Independence of Parametrisation. In practice, we tend to study curves indirectly through
parametric curves. Thus, it makes sense for us to first reframe this discussion in terms of parametric
curves. To connect back to Question 2.3, we pose the following question:

Question 2.4. Suppose we have a property P of parametric curves. When is this property P also
a geometric property of the underlying curves represented by the parametric curves?

Let γ and γ̃ be parametric curves, and suppose that γ and γ̃ describe the same underlying
curve C (that is, they are reparametrisations of each other). Since γ and γ̃ are “the same” in the
sense of curves, then for P to be a property of curves, we require that γ and γ̃ have the same
P-property. Moreover, this equality must be true for any parametrisations that represent the same
curve. Thus, the key point is the following: in order for P to be a geometric property of curves,
we require that P is independent of how a curve is parametrised.

To be less abstract, let us consider some simple examples of parametric curve properties:

Example 2.10. Consider the parametric curves γ1 and γ2 from Example 2.2 and Figure 2.2,

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t),

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2),

which both represent the upper half of the unit circle C+. Clearly, γ1 and γ2 have different domains:

D(γ1) = (0, π), D(γ2) = (−1, 1).

Thus, we conclude that “domain” is not a geometric property of curves, and of C+ in particular,
since it very much depends on how you parametrise the curve.

Example 2.11. Remaining with the setting from Example 2.10, let us contrast the discussion there
with the notion of arc length. Intuitively, it seems sensible to associate a length with C+ itself, not
with γ1 or γ2. Since C+ is half the unit circle, we would expect its length to be

L(C+) =
1

2
(2π · 1) = π.

Later in this chapter, we will learn how to compute L(C+) using γ1 or γ2, or any other parametri-
sation of C+. We will then see that regardless of which parametrisation of C+ we choose, the answer
will always be π. This supports the claim that arc length is a geometric property of curves.

Next, let us return to yet another property of parametric curves: their derivatives. Using a
familiar tool from calculus—the beloved chain rule—we can relate the deriatives of two parametric
curves when they are reparametrisations of each other.
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Theorem 2.3. Let γ : I→ Rn and γ̃ : Ĩ→ Rn be parametric curves. Suppose γ is a reparametri-
sation of γ̃, i.e. there is a change of variables ϕ : I→ Ĩ such that

γ̃(ϕ(t)) = γ(t).

Then, the following identity holds:

(2.12) γ ′(t) = ϕ ′(t) · γ̃ ′(ϕ(t)).

Proof. To derive (2.12), we first express γ and γ̃ in terms of their components,

γ(t) = (γ1(t), . . . , γn(t)), γ̃(t̃) = (γ̃1(t̃), . . . , γ̃n(t̃)).

Using Theorem 2.2, we can expand γ ′(t) in terms of these components as

γ ′(t) =
d

dt
[γ̃(ϕ(t))] =

(
d

dt
[γ̃1(ϕ(t))], . . . ,

d

dt
[γ̃n(ϕ(t))]

)
.

Note that the right-hand side now contains derivatives of real-valued functions. As a result, we
can apply the chain rule from first-year calculus to obtain (2.12):

γ ′(t) = (ϕ ′(t) · γ̃ ′
1(ϕ(t)), . . . , ϕ

′(t) · γ̃ ′
n(ϕ(t)))

= ϕ ′(t) · (γ̃ ′
1(ϕ(t)), . . . , γ̃

′
n(ϕ(t)))

= ϕ ′(t) · γ̃ ′(ϕ(t)). □

The first point to note is that the derivative is not a geometric property of curves, since (2.12)
shows that a reparametrisation will generally change the derivative. On the other hand, (2.12)
also shows that at each point, the derivative will only change by a rescaling (by the factor ϕ ′(t)).

To see how we might interpret Theorem 2.3, let us consider the curve C in red in Figure 2.9.
The picture on the left shows a person walking slowly along C while humming his favourite tune,
while the picture on the right shows a person running quickly along C because he is late to his
next lecture. These two people can be modelled by two parametric curves γ and γ̃.

Figure 2.9. The pictures show one person walking and another person
running along a common red curve. At a single point along the curve (in
green), their velocities are indicated by blue arrows. Both people are heading
in the same direction, but the runner has a higher speed.

Now, at a point of C, indicated by green dot on the figure, both the walking man (γ) and the
running man (γ̃) are heading in the same direction, i.e. γ ′(t) and γ̃ ′(t̃) have the same direction.
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However, the running man would be heading in this direction at a much faster speed, so the
velocity γ̃ ′(t̃) of the running man would be larger than the velocity γ ′(t) of the walking man.
These velocities are indicated by the blue arrows in Figure 2.9. This ratio of the speeds of γ and
γ̃ is precisely what is captured by the factor ϕ ′(t) in (2.12).

2.3.2. Orientation. The next topic of discussion is the orientation of curves. Though not a geomet-
ric property, orientation will play essential roles in some computations in the future. To introduce
the concept, we begin with a very simple example:

Example 2.12. Consider the parametric curves

ℓ1 : R → R3, ℓ1(t) = (0, t, 0),

ℓ2 : R → R3, ℓ2(t) = (0,−t, 0),

whose graphs are illustrated in Figure 2.10.
Observe that ℓ1 and ℓ2 both describe the same curve, the y-axis. Indeed, ℓ2 is a reparametrisation

of ℓ1, since ℓ2(t) = ℓ1(ϕ(t)) for ϕ(t) = −t. On the other hand, ℓ1 and ℓ2 traverse the y-axis in
opposite directions—ℓ1 in the increasing y-direction, and ℓ2 in the decreasing y-direction.

−4 −2
2

4

−4
−2

2
4

−4

−2

2

4

x

y

z ℓ1

−4 −2
2

4

−4
−2

2
4

−4

−2

2

4

x

y

z ℓ2

Figure 2.10. The two plots contain graphs of the oppositely oriented
parametrisations ℓ1 and ℓ2 of the y-axis from Example 2.12.

Example 2.12 demonstrates two parametrisations of a curve having “opposite orientations”.
Intuitively, we can think of orientation as the choice of a direction that one travels along a curve.
In particular, for any curve, there are exactly two orientations; in Example 2.12, the possible
orientations are given by the directions of increasing or decreasing y-value.

When one chooses to work with a parametrisation γ of a curve, one also fixes an orientation,
given by the direction γ traverses along the curve. In Example 2.12, if we use ℓ2 to parametrise
the y-axis, then we have chosen the direction in which the y-coordinate is decreasing.

In practice, orientation will usually be manifested in the signs of some computed quantities. One
example we will soon encounter in this module is the signed curvature; whether this is positive
or negative will depend on which orientation we choose. For this reason, orientation will be a
persistent thorn in our side. In general, there is no reason to favour one orientation of a curve over
the other (for instance, it is no more natural to run around in a circle clockwise than anticlockwise).
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Consequently, we will see that many computations will carry a sign ambiguity resulting from this
need to choose one of two equally valid orientations.

The following question addresses orientations from the point of view of parametric curves:

Question 2.5. Suppose that we have two regular parametrisations γ, γ̃ of a curve. How do we
detect whether they have the same or the opposite orientations?

Since γ and γ̃ are reparametrisations of each other, there must be some change of variables ϕ
such that γ̃(ϕ(t)) = γ(t). Letting t̃ = ϕ(t), we observe that:

• If t̃ = ϕ(t) is an increasing function of t, then γ and γ̃ are traversing in the same direction,
and hence they must have the same orientation.

• If t̃ = ϕ(t) is a decreasing function of t, then γ and γ̃ are traversing in opposite directions,
and hence they define opposite orientations.

As you know from calculus, whether ϕ is increasing or decreasing can be determined by the sign
of ϕ ′. Thus, γ and γ̃ have the same orientation if ϕ ′ > 0, and opposite orientations if ϕ ′ < 0.

Another way to see this is through the identity (2.12):
• Whenever ϕ ′ > 0, the velocities γ ′(t) and γ̃ ′(t̃) (at a common point of curve) point in the

same direction, hence γ and γ̃ must have the same orientation.
• On the other hand, whenever ϕ ′ < 0, the velocities γ ′(t) and γ̃ ′(t̃) point in the opposite

directions, hence γ and γ̃ must have opposite orientations.
(Notice that Theorem 2.3 also ensures that as long as we remain with regular parametrisations,
ϕ ′ can never vanish. Thus, ϕ ′ must always have constant, nonzero sign.)
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Figure 2.11. The parametric curves γ1, γ2, γ3 from Example 2.13.

Example 2.13. Consider the parametrisations of the upper half-circle from Example 2.2:

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t),

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2).

Recall that γ1 is a reparametrisations of γ2, with

γ1(t) = γ2(ϕ(t)), ϕ(t) = − cos t.
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As expected, γ1 and γ2 define the same (anticlockwise) orientation of the upper half-circle, since

ϕ ′(t) = sin t > 0, t ∈ (0, π).

Consider also a third parametric curve:

γ3 : (−1, 1) → R2, γ3(t) = (t,
√
1− t2),

Note that γ3 is a reparmetrisation of γ2, since

γ3(t) = γ2(ψ(t)), ψ(t) = −t.

Furthermore, γ3 and γ2 have opposite orientations, since

ψ ′(t) = −1 < 0, t ∈ (−1, 1).

Indeed, by graphing γ3 (see Figure 2.11), we see that it is traversing the circle clockwise.

There is a cheap method for reversing the orientation of a parametric curve γ, which we already
implicitly demonstrated in Example 2.13. The idea is to simply adopt the change of variables
t̃ = ϕ(t) = −t, which reverses the direction of travel.

Proposition 2.4. Suppose γ : (a, b) → Rn is a parametric curve, with −∞ ≤ a < b ≤ ∞. Then,

γ∗ : (−b,−a) → Rn, γ∗(t) = γ(−t)

defines a reparametrisation of γ that has the opposite orientation as γ.

Proof. γ∗ is indeed a reparametrisation of γ, since

γ∗(t) = γ(ϕ(t)), ϕ(t) = −t, t ∈ (−b,−a).

Since ϕ ′(t) = −1 < 0, then γ̃ and γ have opposite orientations. □

Finally, a useful construct is the notion of an oriented curve, that is, “a curve along with a
choice of orientation”. While this informal description is sufficient as a working definition for
future discussions, we could also formally describe this via the following definition:

Definition 2.7. Consider the equivalence relation ∼o that is defined as follows: two parametric
curves γ and γ̃ satisfy γ ∼o γ̃ iff γ is a reparametrisation of γ̃, and γ and γ̃ have the same
orientation. We can then formally define an oriented curve as an equivalence class of regular
parametric curves under the equivalence relation ∼o.

2.3.3. The Tangent Line. Although the derivative is not a geometric property of curves, we can
use it to generate a related geometric property. To do this, we define the following:

Definition 2.8. Consider a regular parametric curve γ : I → Rn, as well as a point γ(t) along
this curve. We define the tangent line to γ at t to be the set

(2.13) Tγ(t) = {γ(t) + s · γ ′(t) | s ∈ R}.

To make geometric sense of the tangent line, we examine the formula γ(t) + s · γ ′(t) in the
right-hand side of (2.13). (Here, t is fixed, while s is the parameter that varies.) Observe that:
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• Taking s = 0, we see that γ(t) lies in Tγ(t).
• By varying s, we pick up points reached by moving from γ(t) along the γ ′(t)-direction.

Thus, we see that Tγ(t) represents the line through the point γ(t) in the direction given by γ ′(t),
that is, in the direction in which the curve is moving.

Furthermore, since Tγ(t) precisely captures the same direction of γ at t, we can also think of
Tγ(t) as the line that best approximates γ near γ(t). In particular, this reaffirms the interpretation
of derivatives as the “best linear approximation” of a function.

To make this more clear, let us consider some concrete examples and figures.

Example 2.14. Consider the parametric curve

γ : R → R2, γ(t) = (cos t, sin t),

which represents the unit circle about the origin. Taking t = π
4
, we compute

γ
(π
4

)
=
(

cos π
4
, sin π

4

)
=

(
1√
2
,
1√
2

)
,

γ ′
(π
4

)
=
(
− sin π

4
, cos π

4

)
=

(
−
1√
2
,
1√
2

)
.

The tangent line to γ at π
4

is then given by

Tγ
(π
4

)
=

{(
1√
2
,
1√
2

)
+ s

(
−
1√
2
,
1√
2

)
| s ∈ R

}
=

{(
1√
2
−
1√
2
· s, 1√

2
+
1√
2
· s
)

| s ∈ R
}

.

See Figure 2.12 for a graphical representation: the curve represented by γ is drawn in red, while
γ(π

4
), γ ′(π

4
), and Tγ(π4 ) are drawn in green, blue, and purple, respectively.
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Figure 2.12. The left plot is the setup from Example 2.14—γ, γ(π
4
), γ ′(π

4
),

and Tγ(π4 ) are indicated in red, green, blue, and purple, respectively. The
right plot contains the setup from Example 2.15, with f(t) = et—γf, γf(0),
γ ′
f(0), and Tγf(0) are indicated in red, green, blue, and purple, respectively.

Next, we consider a familiar setting from first-year calculus:
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Example 2.15. Let f : (−1, 1) → R, and consider the parametric curve

γf : (−1, 1) → R2, γf(t) = (t, f(t)),

which is precisely the graph of the function f. For any t ∈ (−1, 1), we have that

γ ′
f(t) = (1, f ′(t)),

while the tangent line of the graph of f at t is given by

Tγf(t) = {(t, f(t)) + s(1, f ′(t)) | s ∈ R}.

These objects are indicated in the second part of Figure 2.12.
Moreover, in the equation (t, f(t)) + s(1, f ′(t)) of the tangent line, note that if we increase s by

1, then the x-component increases by 1, while the y-component increases by f ′(t). Then, the slope
of this tangent line through (t, f(t)) is given by this ratio of the changes in y and x:

slope =
∆y

∆x
=
f ′(t)

1
= f ′(t).

As expected, the slope of a tangent line through the graph of f is given by f ′.

We previously hinted that the tangent line is a geometric property of curves, but why is this so?
Suppose γ̃ is a reparametrisation of a parametric curve γ, and let t and t̃ be such that γ̃(t̃) = γ(t),
that is, we consider a common point along the trajectories of γ and γ̃.

Recall that Theorem 2.3 implies γ̃ ′(t̃) is a scalar multiple of γ ′(t). Thus, the set of all scalar
multiples s · γ̃ ′(t̃) of γ̃ ′(t) is identical to the set of all scalar multiples s · γ ′(t) of γ ′(t), and hence

Tγ̃(t̃) = {γ̃(t̃) + s · γ̃ ′(t̃) | s ∈ R} = {γ(t) + s · γ ′(t) | s ∈ R} = Tγ(t).

In particular, the above shows that the tangent line is independent of parametrisation, hence
it must be a geometric property of curves. Intuitively, this seems sensible, since the tangent line
indicates the “two possible directions of the curve at a point”; this should depend on the shape
and the positioning of the curve, not on how one moves along the curve.

2.3.4. Tangent Vectors. We conclude this section with a more conceptual discussion—we introduce
a different (but equivalent) perspective for characterising and studying tangent lines.

For this, we must first go back to some basic intuitions behind vectors. When you first learned
about vectors, you probably visualised them as “arrows” in the plane or in space. More specifically,
you probably saw them as objects that “started from a point” and “pointed in some direction”.

p

v

Figure 2.13. The
“arrow” v|p.

To describe these “arrows” formally, we require two pieces of information:
• The starting point p ∈ Rn of the “arrow”.
• The direction v ∈ Rn in which the “arrow” is pointing.

Then, from this pair v and p, we can craft the mathematical object v|p
representing this “arrow” that begins at p and points in the direction v.

Remark. Note that this is closely related to the concept of bound vectors,
which you encountered in MTH4103/4203: Geometry I, though we will
use them in rather different ways. In particular, the “arrow” v|p above
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corresponds to the bound vector starting at p and terminating at p + v.
Moreover, v is the free vector represented by this bound vector.

Observe that there is a natural linear structure associated with these “arrows”, in the sense that
we can do “vector-like things” with them. For example:

• Given an “arrow” and a scalar c ∈ R, we can multiply them:

(2.14) c · v|p = (cv)|p.

• Given two “arrows” starting from the same point, we can add them.

(2.15) v|p + w|p = (v + w)|p.

• We an also naturally measure the length of an “arrow”:

(2.16) |v|p| = |v|.

Figure 2.14 demonstrates the geometric interpretations associated with (2.14) and (2.15).

Remark. Formally, one would describe these “arrows” an ordered pair (v,p) ∈ Rn×Rn. However,
we remain with the notation v|p, as it is more suggestive of the intuitions we wish to capture.

p v|p

2 · v|p

p

v|p
w|p

v|p +w|p

Figure 2.14. The above show the geometric meanings of (2.14) and (2.15).

Now, how do these “arrows” relate to studying the geometry of curves? Consider a parametric
curve γ : I → Rn, which models the trajectory of a particle. While we already argued that γ ′(t)

represents the velocity of the particle at time t, conceptually speaking, this does not yet capture
all the information we have. Indeed, it makes more conceptual sense to model the velocity as an
“arrow” beginning at γ(t) and pointing in the direction of γ ′(t), that is, the object γ ′(t)|γ(t).

Definition 2.9. Given a parametric curve γ : I→ Rn, we define its tangent vector at t ∈ I to be

(2.17) γ ′(t)|γ(t).

Example 2.16. In Figures 2.5, 2.9, and 2.12, the blue arrows that were drawn to indicate the
velocity were actually the tangent vectors (γ ′(t)|γ(t)), since they also had starting points.

Next, notice that the two pieces of information in the tangent vector (2.17)—γ ′(t) and γ(t)—are
precisely the same information describing the tangent line Tγ(t) from Definition 2.8. As a result,
we can alternately characterise the tangent line as:

Definition 2.10. Assuming the setting of Definition 2.8, we define the tangent line to γ at t as

(2.18) Tγ(t) = {s · γ ′(t)|γ(t) | s ∈ R}.
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Definition 2.10 gives a slightly different view of the tangent line. Here, we characterise it as
the set of all “arrows” beginning at the point γ(t) on the curve and pointing in a manner tangent
to γ. Of course, this is formally equivalent to the previous Definition 2.8. The main conceptual
difference is that Definition 2.10 highlights the linear structure inherent to the tangent line.

Suppose γ̃ is a reparametrisation of γ. By Theorem 2.3, we see that at the corresponding point
γ̃(t̃), the tangent vector of γ̃ is but a scalar multiple of that of γ, that is,

γ̃ ′(t̃)|γ̃(t̃) = γ̃
′(ϕ(t))|γ̃(ϕ(t)) =

1

ϕ ′(t)
· γ ′(t)|γ(t),

In other words, when a curve is reparametrised, its corresponding tangent vector is transformed
via a scalar multiplication of the form (2.14). Since we can adapt reparametrisations—via clever
enough choices of ϕ in Theorem 2.3—to achieve any value we want for ϕ ′(t), this leads to a fully
geometric characterisation of the tangent line of Definition 2.10:

Theorem 2.5. For a curve C, its tangent line at a given point p is the set of all possible tangent
vectors at p from all possible parametrisations of C.

In the case of curves, the one-dimensional structure of the tangent line is simple enough that
there is little direct benefit to introducing all this new machinery. However, this alternative way
of thinking will be more important in higher dimensions, in particular when we study surfaces.

2.4. Curve Integrals. We now discuss another question that is closely tied to calculus:

Question 2.6. Given a finite curve, how do we define and compute its length?

We answer this question using tools from single-variable calculus, and we show that this length
defines a geometric property of curves. In addition, this discussion will suggest a notion of “inte-
gration along a curve”, which we treat at the end of the section.

2.4.1. Arc Length. Let us first tackle Question 2.6. If the curve in question is a line segment ℓ, say
from a point p to another point q, then what the length of the segment is should be clear. Indeed,
by treating p and q as “position vectors”, this segment can be represented by the difference q−p.
The length of ℓ then corresponds to the norm of this difference

L(ℓ) = |q − p|.

Now, for general curves, we adopt a common strategy from integral calculus: we approximate
the curve as a finite number of line segments. We consider a parametric curve γ : (a, b) → Rn,
and we choose a finite number of points along γ:

γ(t0), γ(t1), . . . , γ(tN), a < t0 < t1 < · · · < tN < b.

See the plots in Figure 2.15 for an example of this situation; the curve represented by γ is drawn
in red, while the sample points along γ are indicated in green.

We now approximate γ by “connecting the dots”, that is, by taking the collection Γ of line seg-
ments made by connecting each sample point γ(ti−1) with its successive point γ(ti). In Figure 2.15,
this is indicated by the blue line segments. The total length of Γ would then give an approximation
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of the length of γ. Since the segment connecting γ(ti−1) and γ(ti) has length |γ(ti) − γ(ti−1)|, the
total length of Γ can obtained by adding these lengths of all the individual segments:

(2.19) L(Γ) =

N∑
i=1

|γ(ti) − γ(ti−1)| =

N∑
i=1

|γ(ti) − γ(ti−1)|

|ti − ti−1|
· ∆ti, ∆ti = ti − ti−1.

x

y

x

y

Figure 2.15. To approximate the length of the red parabolic curve, we
pick a finite sample of points (in green) on the curve, and we compute the
total length of the line segments (in blue) connecting the sampled points.
In terms of (2.19), we took N = 4 on the left plot, and N = 8 on the right.

Of course, L(Γ) does not give the actual the length of γ, only an approximate value. If we are
not satisfied with this approximation, we can try again with a larger sampling of points, i.e. we
increase the value of N. By choosing a larger number of points along γ that are closer to each
other, the resulting line segments will be a better approximation of γ than before; for example,
compare the left and right plots in Figure 2.15. For this new Γ , we can once again calculate its
length as in (2.19), obtaining an improved approximation of the length of γ.

Now, to obtain the exact length of γ, the idea is to use an “infinitely good” approximation.
To do this, we let the number of points we sample (N) tend to infinity, and we let the distance
between successive t-parameters in our sampling tend to 0. Note that as ti − ti−1 → 0, the ratio

γ(ti) − γ(ti−1)

ti − ti−1

approaches the derivative γ ′(ti−1). While we do not have the background for discussing this
rigorously, the intuitive idea is that in taking the above limits, we obtain that

lim
N→∞
∆t→0 L(Γ) = lim

N→∞
∆t→0

N∑
i=1

|γ(ti) − γ(ti−1)|

|ti − ti−1|
· ∆ti =

∫b
a

|γ ′(t)|dt.

Remark. Those who interested in more rigorous developments of integration theory should consult
material from real analysis, or from the module MTH5105: Differential and Integral Analysis.

In summary, the above process motivates our next definition:
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Definition 2.11. Given a regular parametric curve γ : (a, b) → Rn, we define its arc length by

(2.20) L(γ) =

∫b
a

|γ ′(t)|dt.

Let us test our brand new definition on some basic examples:

Example 2.17. Fix x0, y0 ∈ R, and consider the parametric line segment

ℓ : (0, 1) → R2, ℓ(t) = (x0t, y0t).

This is the line segment between the origin (t = 0) and the point (x0, y0) (t = 1).
To compute its length, we first compute its speed:

ℓ ′(t) = (x0, y0), |ℓ ′(t)| =
√
x20 + y

2
0.

Since x0, y0 are constants, then the arc length is given by

L(ℓ) =

∫ 1
0

|ℓ ′(t)|dt =
√
x20 + y

2
0

∫ 1
0

dt =
√
x20 + y

2
0.

Note that this is exactly the length you would expect from the Pythagorean theorem.

(x0, y0)

y0

x0

√
x2
0 + y20

x

y
ℓ

R x

y γ

Figure 2.16. The settings from Examples 2.17 and 2.18, respectively.

Next, you have probably for years learned and memorised that the circumference of a circle of
radius R > 0 is 2πR. However, you may not been taught why this formula holds. Now that we
have properly defined arc length, we can use it to justify this formula:

Example 2.18. Fix R > 0, and consider the parametric curve

γ : (0, 2π) → R2, γ(t) = (R cos t, R sin t).

Note that γ parametrises (one revolution of) a circle of radius R about the origin.
A direct computation yields the speed of γ:

γ ′(t) = (−R sin t, R cos t), |γ ′(t)| =
√
R2 sin2 t+ R2 cos2 t = R.
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Consequently, using (2.20), we obtain the familiar formula:

L(γ) =

∫ 2π
0

|γ ′(t)|dt = R

∫ 2π
0

dt = 2πR.

We had previously advertised that arc length is a geometric property of curves. Let us now
explore this in detail, beginning with a return to an example from the beginning of this chapter.

Example 2.19. Let us first return to the parametric curves from Example 2.2 (see Figure 2.2),

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t),

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2),

which trace out the upper half C+ of the unit circle. We previously indicated in Example 2.11 that
the length of C+ should be π regardless of how C+ is parametrised. Let us now test this assertion.

The length of γ1 can be computed like in Example 2.18. We first calculate

|γ ′
1(t)| = |(− sin t, cos t)| = 1.

Integrating the above over the domain (0, π) of γ1 yields its arc length:

L(γ1) =

∫π
0

|γ ′
1(t)|dt =

∫π
0

dt = π.

The computation for γ2 is a bit tricker, but the process is similar. First, observe that

γ ′
2(t) =

(
−1,

1

2
· −2t√
1− t2

)
=

(
−1,−

t√
1− t2

)
,

|γ ′
2(t)| =

√
1+

t2

1− t2
=

√
(1− t2) + t2

1− t2
=

1√
1− t2

.

To integrate |γ ′
2(t)|, we Google the answer apply a clever trigonometric substitution,

t = − cosu, dt = sinu · du,

and hence obtain

L(γ2) =

∫ 1
−1

1√
1− t2

dt =

∫π
0

1√
1− cos2 u

· sinu · du =

∫π
0

du = π.

Indeed, we obtain the same arc length π as for γ1.

You may have noticed that the trigonometric substitution t = − cosu in Example 2.19 was the
same as the change of variables (2.8) that linked γ1 and γ2. This is, of course, no accident, and it
plays a major role in establishing general parametrisation-independence for the arc length:

Theorem 2.6. If γ : (a, b) → Rn and γ̃ : (ã, b̃) → Rn are regular parametrisations of the same
finite curve, then L(γ) = L(γ̃). In other words, arc length is a geometric property of curves.

Proof. Since γ is reparametrisation of γ̃, there is a change of variables ϕ : (a, b) → (ã, b̃) with

γ(t) = γ̃(ϕ(t)), t ∈ (a, b).
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By Theorem 2.3, we have
|γ ′(t)| = |ϕ ′(t)||γ̃ ′(ϕ(t))|

Thus, using Definition 2.11 and the above yields

L(γ) =

∫b
a

|γ ′(t)|dt =

∫b
a

|γ̃ ′(ϕ(t))||ϕ ′(t)|dt.

We now apply the substitution t̃ = ϕ(t) and dt̃ = ϕ ′(t) ·dt. (Some care has to be taken regarding
orientation; in particular, the orientation is reversed when ϕ ′ < 0.) From this, we see that

L(γ) =


∫b̃
ã
|γ̃ ′(t̃)|dt̃ ϕ ′ > 0∫ã

b̃
|γ̃ ′(t̃)|(−dt̃) ϕ ′ < 0

=

∫ b̃
ã

|γ̃ ′(t̃)|dt̃ = L(γ̃). □

One consequence of Theorem 2.6 is that it makes sense to speak of the arc length of a curve
C—that is, L(C)—rather than just the arc length of a parametric curve.

2.4.2. Unit Speed Parametrisations. Recall that for any curve, one can find (infinitely) many dif-
ferent parametrisations of it. When studying the geometry of curves, this can be positively viewed
as the freedom to choose a parametrisation that best suits us. One such candidate parametrisation,
which also has close ties to the geometric properties, is the following:

Definition 2.12. A parametric curve γ : I→ Rn is called a unit-speed parametrisation iff

(2.21) |γ ′(s)| = 1, s ∈ I.

If γ represents the trajectory of a particle, then γ being a unit-speed parametrisation means
that the particle is travelling along its path at a constant, unit speed. One simple example of this
is the standard polar parametrisation of the unit circle:

Example 2.20. Let γ be the parametric curve

γ : R → Rn, γ(s) = (cos s, sin s),

which represents the unit circle. Recall from Example 2.6 that

γ ′(s) = (− sin s, cos s), |γ ′(s)| = 1.

Thus, γ is also a unit-speed parametrisation of the unit circle.

Remark. As a general convention, we will use “s” to refer to unit-speed parameters.

We had previously, in Definition 2.11, discussed how to compute the arc length of a parametric
curve γ : (a, b) → Rn. Similarly, if we wanted to compute the arc length of only a portion of this
curve, say from γ(t0) to γ(t1) (with t0 < t1), then we would integrate

(2.22) L(γ; t0, t1) =

∫ t1
t0

|γ ′(t)|dt.

Note that the integrand is the same as in (2.20), while the limits t0 and t1 of integration mean
that we are precisely capturing the portion of γ with parameter t between t0 and t1.

Now, the formula for (2.22) becomes considerably simpler for unit-speed parametrisations:
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Proposition 2.7. If the parametric curve γ : (a, b) → Rn is a unit-speed parametrisation, then

(2.23) L(γ; s0, s1) = s1 − s0, a ≤ s0 < s1 ≤ b.

Proof. Since γ has unit speed, (2.22) immediately yields

L(γ; s0, s1) =

∫ s1
s0

|γ ′(s)|ds =

∫ s1
s0

ds = s1 − s0. □

Observe that Proposition 2.7 states that for a unit-speed parametrisation, its parameter s corre-
sponds precisely to the length travelled along the curve. As a result of this, unit-speed parametri-
sations are also often called arc length parametrisations.

Intuitively, this result should not be surprising. For instance, Proposition 2.7 can be interpreted
as follows: if you move along a path (γ) at a speed of 1 metre per second (|γ ′(s)| = 1), then after
12 seconds (s1 − s0 = 12), you have travelled exactly 12 metres (L(γ; s1, s0) = 12).

Example 2.21. For the unit-speed parametrisation of the unit circle in Example 2.20,

γ : R → Rn, γ(s) = (cos s, sin s),

the parameter s corresponds to the polar angle (in radians) of the point on the circle. Thus, if you
start on the point of the circle at angle θ0 and move anticlockwise along the circle to the point with
angle θ1 (see Figure 2.17), then the total distance you travelled is

L(γ; θ0, θ1) = θ1 − θ0.

In particular, if you walked around the entire circle once (θ1 − θ0 = 2π), then the total distance
you travelled would be 2π, i.e. the circumference of the circle.

−2 −1 1 2

−2

−1

1

2

γ(θ0)

γ(θ1)

x

y

γ

Figure 2.17. The green curve is
an arc of the unit circle, ranging
from angle θ0 = π

3
to θ1 = 5π

4
.

We have now discussed the meaning of unit-speed
parametrisations and their connections to arc length. The
next, more practical question, is the following:

Question 2.7. Given a curve, how can we find a unit
speed parametrisation of it?

The answer, roughly, is to reverse the logic we have al-
ready discussed. Recall that for a unit-speed parametri-
sation, the parameter itself corresponds to the distance
travelled. The strategy, then, is to instead define the pa-
rameter by the length travelled and then show that this
has unit speed. In other words, if after s seconds, for any
s, you have travelled s metres, then you must have been
moving at a speed of 1 metre per second all along.

Theorem 2.8. Let γ : (a, b) → Rn be a regular parametric curve. Then, there exists a reparametri-
sation γ̃ of γ such that γ̃ has unit speed. Furthermore, γ̃ can be defined as

(2.24) γ̃ : (0, L(γ)) → Rn, γ̃(s) = γ(t), s = ϕ(t) = L(γ;a, t).
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Proof. Let us define ϕ as in (2.24). Recalling (2.22) and the fundamental theorem of calculus,

ϕ ′(t) =
d

dt
L(γ;a, t) =

d

dt

∫ t
a

|γ ′(τ)|dτ = |γ ′(t)|.

Since γ is regular, the above implies that ϕ ′ is always positive, and hence ϕ always has a (smooth,
bijective) inverse ϕ−1. We can now define our reparametrisation γ̃ by

γ̃ : (0, L(γ)) → Rn, γ̃(s) = γ(ϕ−1(s)).

(Note that 0 < s < L(γ) corresponds exactly to a < t < b.)
Observe that the above is precisely (2.24). Thus, it remains only to show that γ̃ is a unit speed

parametrisation. For this, we start with (2.24) and recall Theorem 2.3:

|γ̃ ′(s)| = |γ̃ ′(ϕ(t))| =
1

|ϕ ′(t)|
|γ ′(t)| =

|γ ′(t)|

|γ ′(t)|
= 1. □

Example 2.22. Consider the parametric line segment (see the first part of Figure 2.18)

ℓ : (0, 1) → R3, ℓ(t) = (2t,−t, 4t).

We now use Theorem 2.8 to find a unit-speed reparametrisation of ℓ.
First, we calculate the speed of ℓ:

ℓ ′(t) = (2,−1, 4), |ℓ ′(t)| =
√
22 + 12 + 42 =

√
21.

With |ℓ ′|, we can compute the “distance travelled thus far” on ℓ:

L(ℓ; 0, t) =

∫ t
0

|ℓ ′(τ)|dτ =
√
21

∫ t
0

dτ =
√
21 · t.

By Theorem 2.8, we obtain the unit-speed parameter by

s = ϕ(t) = L(ℓ; 0, t) =
√
21 · t, t =

1√
21

· s.

Thus, the unit-speed reparametrisation is given by

ℓ̃ : (0, L(ℓ)) = (0,
√
21) → R3, ℓ̃(s) = ℓ(t) = ℓ

(
1√
21

· s
)

=
1√
21

(2s,−s, 4s).

Example 2.23. Let γ denote the logarithmic spiral,

γ : (0,∞) → R2, γ(t) = (cos t · et, sin t · et).

A plot of γ is given in the second part of Figure 2.18.
Again, we begin by computing the speed of γ:

γ ′(t) = (cos t · et − sin t · et, sin t · et + cos t · et) = et(cos t− sin t, sin t+ cos t),

|γ ′(t)| = et
√
(cos t− sin t)2 + (sin t+ cos t)2 = et

√
2 cos2 t+ 2 sin2 t =

√
2 · et.

The “distance travelled thus far” on γ is then

L(γ; 0, t) =

∫ t
0

|γ ′(τ)|dτ =
√
2

∫ t
0

eτdτ =
√
2(et − 1).
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We now apply Theorem 2.8 to find the unit-speed parameter:

s = ϕ(t) =
√
2(et − 1), et =

1√
2
· s+ 1, t = ln

(
1√
2
· s+ 1

)
.

Thus, the unit-speed reparametrisation is given by

γ̃ : (0, L(γ; 0,∞)) = (0,∞) → Rn,
γ̃(s) = γ(t)

= γ

(
ln
(
s√
2
+ 1

))
=

(
s√
2
+ 1

)(
cos ln

(
s√
2
+ 1

)
, sin ln

(
s√
2
+ 1

))
.
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Figure 2.18. The left plot contains the segment ℓ from Example 2.22, while
the right plot contains part of the logarithmic spiral γ from Example 2.23.

Unit-speed parametrisations are natural to consider, since they tie the parameter to a geometric
property—the arc length. On the other hand, unit-speed parametrisations can in general be
impractical to compute and usually cannot be evaluated explicitly in terms of elementary functions.
(In fact, examples such as the spiral in Example 2.23 were very carefully chosen so that the resulting
arc length integral could be fully expanded.) As a result, unit-speed parametrisations are usually
more useful for theoretical purposes than for practical computations.

2.4.3. Path Integrals. As you know from first year calculus, in flat settings, (single) integrals are
closely tied to the notion of length. More specifically, given an interval (a, b) in R, the integral∫b

a

1 · dx = b− a.

gives the length of this interval. More generally, given a function f : (a, b) → R, we can interpret∫b
a

f(x)dx
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as a “weighted length” of the interval (a, b), where the “weight” is given by the integrand f.
The term “weighted length” is left deliberately vague, as it can have many different meanings

in various contexts. One example that you have likely encountered in calculus is the following:

Example 2.24. Suppose f : (a, b) → R is everywhere positive, and suppose we want to compute
the area of the region R lying between the graph of f and the x-axis, i.e. “the area under the curve”:

R = {(x, y) ∈ R2 | x ∈ (a, b), 0 < y < f(x)}.

(See Figure 2.19 for a graphical representation.) In calculus, you learned that the area of R is

A(R) =

∫b
a

f(x)dx.

One way to interpret this area integral is as a “weighted length”. In other words, we can think
of this area as a “length” of the interval (a, b), except that at each x ∈ (a, b), we assign the height
f(x) of f as a weight. As a result, points at which f is higher count more toward this “weighted
length” than points at which f is lower, as we would expect from intuition.

Such “weighted lengths” also appear in physics. One simple example is as follows:

Example 2.25. Let the interval (a, b) represent a rod. Consider a function f : (a, b) → R, where
f(x) represents the mass density (i.e. mass per unit length) of the rod at a position x.

Suppose we wish to compute the total mass of the rod. The idea is once again to take a “weighted
sum” of the mass distributed throughout the rod, which is given by

m =

∫b
a

f(x)dx.

In particular, places along the rod where the mass density f is higher would “count more” toward
the mass than places where the mass density is lower.

Figure 2.19. The setting
from Example 2.24; the re-
gion R is in green.

It is now natural to ask whether these intuitions for intervals
could be further extended to curves. In particular, can we define
a notion of integration on curves, which:

(1) Is tied to its arc length, and
(2) Generalises the usual integral from calculus?

To explore this, let us fumble around a bit.
Let C be a curve in Rn, and let γ : (a, b) → Rn be a parametri-

sation of C. Like for intervals, we should expect the “integral of
1 over C” (which we have yet to define) to yield its arc length:

(2.25)
∫
C

ds = L(C) =

∫b
a

|γ ′(t)|dt.

Now, for a real-valued function F defined on C, we wish to define its integral over C,∫
C

Fds,
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to represent a “weighted arc length”. Looking at the right-hand side of (2.25), it makes sense to
insert F into the integrand there, which fits with the intuition of F being a weight.

Moreover, since |γ ′(t)| represents the speed of γ at γ(t), it would be sensible that the weight F
is also being applied at the same point γ(t), that is,∫

C

Fds =

∫b
a

F(γ(t))|γ ′(t)|dt.

In fact, this is the formal definition we will use for the integration over C.

Definition 2.13. Let C be a curve in Rn, and let F be a real-valued function that is defined on the
image of C. Then, we define the path integral (or line integral) of F over the curve C by

(2.26)
∫
C

Fds =

∫b
a

F(γ(t))|γ ′(t)|dt.

where γ : (a, b) → Rn is a parametrisation of C.

Before continuing our theoretical discussion, let us first compute a simple example:

Example 2.26. Let C+ be the upper half of the unit circle (see Example 2.2), and let

F : R2 → R, F(x, y) = y.

Let us now evaluate the path integral ∫
C+

Fds =

∫
C+

yds.

According to Definition 2.13, the first step is to choose a parametrisation of C+. Here, we choose

γ1 : (0, π) → R2, γ1(t) = (cos t, sin t).

Recall that the speed of γ1 is
|γ ′
1(t)| = |(− sin t, cos t)| = 1,

while F, evaluated at γ1(t), is

F(γ1(t)) = F(cos t, sin t) = sin t.

Thus, from Definition 2.13, we compute∫
C+

Fds =

∫π
0

F(γ1(t))|γ
′
1(t)|dt =

∫π
0

sin t · 1 · dt = − cos t|π0 = 2.

In defining the path integral as in Definition 2.13, we have missed one very crucial detail. In
(2.26), the path integral is expressed in terms of some chosen parametrisation γ of the given curve
C. However, if we were to take another parametrisation γ̃ of C, we could hypothetically obtain
a different value for the integral. If this was the case, then our definition no longer makes sense,
since it would allow for multiple values associated to our integral.

The following theorem saves the day by showing that this dangerous scenario cannot hold. In
other words, the path integral, as defined in (2.26), is independent of parametrisation.



(MTH5109) LECTURE NOTES 37

Theorem 2.9. Assume the setting of Definition 2.13. Then, the right-hand side of (2.26) does
not depend on the chosen parametrisation γ of C.

Proof. The proof is a straightforward generalisation of the proof of Theorem 2.6 (for the indepen-
dence of parametrisation of the arc length). Suppose γ̃ : (ã, b̃) → Rn is a reparametrisation of γ,
and let ϕ : (a, b) → (ã, b̃) be the change of variables satisfying

γ(t) = γ̃(ϕ(t)), t ∈ (a, b).

Since Theorem 2.3 implies that |γ ′(t)| = |ϕ ′(t)||γ̃ ′(ϕ(t))|, then∫b
a

F(γ(t))|γ ′(t)|dt =

∫b
a

F(γ̃(Φ(t)))|γ̃ ′(ϕ(t))||ϕ ′(t)|dt.

Apply the substitution t̃ = ϕ(t) and dt̃ = ϕ ′(t) · dt, we see that∫b
a

F(γ(t))|γ ′(t)|dt =


∫b̃
ã
F(γ̃(t̃))|γ̃ ′(t̃)|dt̃ ϕ ′ > 0∫ã

b̃
F(γ̃(t̃))|γ̃ ′(t̃)|(−dt̃) ϕ ′ < 0

=

∫ b̃
ã

F(γ̃(t̃))|γ̃ ′(t̃)|dt̃,

which is the desired parametrisation-independence. □

In particular, since path integrals are generally independent of parametrisations, then any path
integral of a fixed function produces a geometric property of curves.

Example 2.27. Returning to the upper half circle C+ from Example 2.26, we now try computing
the same path integral using another parametrisation of C+,

γ2 : (−1, 1) → R2, γ2(t) = (−t,
√
1− t2).

In Example 2.19, we computed the speed of γ2:

|γ ′
2(t)| =

1√
1− t2

.

Evaluating F at γ2(t), we obtain

F(γ2(t)) = F(−t,
√
1− t2) =

√
1− t2.

Thus, Definition 2.13 applied to γ2 yields∫
C+

Fds =

∫ 1
−1

F(γ2(t))|γ
′
2(t)|dt =

∫ 1
−1

√
1− t2 · 1√

1− t2
· dt =

∫ 1
−1

dt = 2.

In particular, we obtain the same answer as in Example 2.26.

You may now ask: which parametrisation of a curve should you choose when computing a path
integral? The good news is that since you get the same answer regardless of your choice, the best
course of action is to use the parametrisation that results in the simplest computations. In other
words, you have the freedom to be as lazy as possible.
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Example 2.28. Next, we compute the path integral∫
L

(y+ z)ds,

where L is the curve described by the parametric line from Example 2.22,

ℓ : (0, 1) → R3, ℓ(t) = (2t,−t, 4t).

In Example 2.22, we already showed that

|ℓ ′(t)| =
√
21.

Moreover, for the function F(x, y, z) = y+ z, we have

F(ℓ(t)) = F(2t,−t, 4t) = −t+ 4t = 3t.

Consequently, by Definition 2.13,∫
L

(y+ z)ds =

∫ 1
0

F(ℓ(t))|ℓ ′(t)|dt =
√
21

∫ 1
0

(3t)dt =
3
√
21

2
.

How might one interpret a path integral along a curve? Again, the answers are as diverse as for
the usual integrals on intervals. Indeed, essentially any interpretation for standard integrals has a
direct generalisation to path integrals on curves:
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Figure 2.20. The setting from Example 2.30. The left plot shows the curve
C in R2, while the right plot shows the region R in 3-dimensional space that
is lying between C and the graph of F.

Example 2.29. Suppose the rod from Example 2.25 is now curved; let us model this rod as a curve
C. If F represents the mass density along the rod, then its total mass would be∫

C

Fds.
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Example 2.30. Let C be a curve in the plane R2 (see the first part of Figure 2.20), and let F be a
positive function on C. Similar to Example 2.24, suppose we wish to compute “the area under the
graph of F”, that is, the area of the region (see the second part of Figure 2.20)

R = {(x, y, z) ∈ R3 | (x, y) ∈ C, 0 < z < F(x, y)}.

between C and the graph of F. Then, the area of R can be expressed as

A(R) =

∫
C

Fds.
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3. How is a Curve Curved?

In Chapter 2, we explored how curves can be described, in particular through parametrisations.
We also studied some geometric properties, such as tangent lines and arc length, and we discussed
their connections to differential and integral calculus. In this chapter, we continue studying the
geometry of curves by addressing the following fundamental question:

Question 3.1. How can we describe how “curved” a curve is? How can we quantify this curvature?

We will open this chapter by discussing some general ideas around curvature and how it could be
measured. In subsequent sections, we will explore in more detail the special cases of plane curves
(i.e. curves in R2) and space curves (i.e. curves in R3).

3.1. General Ideas. To answer Question 3.1, we begin with some in-
tuitions. If asked to think of something curved, then you may visualise
a piece of string or rope that is bent, or you may picture a snake that
is wound up in a coil. In more abstract settings, you might then think
of curvature as a curve that is also, in some sense, “bending”.

If you have a more negative outlook, then you might also think of
“curved” or “bent” as the opposite of what a straight line would be.
The defining feature of straight lines is that no matter where you are
along the line, it is always maintains the same direction. In contrast, we can then characterise
“curving” or “bending” as the change in the direction of a curve. The more that the direction is
changing, the more “curved” a curve is said to be.

Luckily for us, “direction” is a concept that we have defined quite precisely. Therefore, with the
ideas presented above, we are now in a position to derive a geometric definition of curvature.

3.1.1. Defining Curvature. Let γ be a regular parametric curve. Recall that γ ′(t) represents the
velocity, or the rate of change of the position, of γ at parameter t. Moreover, if we filter out the
length of γ ′(t), that is, we consider the unit vector |γ ′(t)|−1γ ′(t), then we are left only with the
direction of γ at t. Since our idea is to characterise curvature as the change of direction, this
suggests that we should measure the derivative of the direction:

(3.1)
∣∣∣∣ ddt

[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ .
While this seems like a reasonable definition for curvature, there is one subtle but important

issue. Since curvature should capture a geometric property of curves, we require that a satisfactory
definition of curvature must be independent of parametrisations. However, the outer derivative d

dt

in the equation (3.1) seems to violate this criterion. (On the other hand, the direction |γ ′(t)|−1γ ′(t)

is parametrisation-independent up to orientation—can you see why?)
The idea now is to replace this d

dt
by a derivative that is more geometric in nature. For this,

we recall that arc length is a geometric property. Thus, it would be more sensible to differentiate
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with respect to an arc length parameter s. In other words, we attempt to define the curvature as

(3.2)
∣∣∣∣ dds

[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ = ∣∣∣∣dtds · ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ .
Now, we are almost in good shape (partial pun not intended); we only need to rewrite this d

ds

in terms of something that we can work with. From the relations in Theorem 2.8 between the arc
length parameter s and an arbitrary parameter t, we (rather informally) derive that

ds

dt
=
d

dt
[L(γ; t0, t)] = |γ ′(t)|, dt

ds
=

1

|γ ′(t)|
,

where t0 represents any chosen “starting” parameter of γ. Substituting the above formula for dt
ds

into (3.2), we arrive at the formal definition of curvature:

Definition 3.1. Let γ : I → Rn be a regular parametric curve, and let t ∈ I. We define the
curvature of γ at the point γ(t) (or alternatively, at the parameter t) as

(3.3) κ|γ(t) =
1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ .
Next, we establish that Definition 3.1 is indeed independent of parametrisation, i.e. that cur-

vature is a geometric property. Intuitively, the main idea is that both the direction |γ ′(t)|−1γ ′(t)

and the outer derivative d
ds

= |γ ′(t)|−1 d
dt

in (3.3) depend only on the orientation, through a factor
of ±1. The absolute values in (3.3) then do away with this factor.

Theorem 3.1. Assuming the setting of Definition 3.1, then the right hand side of (3.3) is inde-
pendent of parametrisation. More specifically, if γ̃ : Ĩ → Rn is a reparametrisation of γ, and if
ϕ : I→ Ĩ is the change of variables satisfying γ(t) = γ̃(ϕ(t)) for all t ∈ I, then

(3.4) 1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ = 1

|γ̃ ′(t̃)|

∣∣∣∣ ddt̃
[
γ̃ ′(t̃)

|γ̃ ′(t̃)|

]∣∣∣∣ , t̃ = ϕ(t).

Proof. Using the relations from Theorem 2.3, we have that

γ̃ ′(t̃) = γ̃ ′(ϕ(t)) =
1

ϕ ′(t)
· γ ′(t), |γ̃ ′(t̃)| =

|γ ′(t)|

|ϕ ′(t)|
.

Furthermore, observe that
d

dt̃
=
dt

dt̃
· d
dt

=
1

ϕ ′(t)
· d
dt

.

Combining the above and noting that
|ϕ ′(t)|

ϕ ′(t)
= ±1,

we obtain the desired identity (3.4):
1

|γ̃ ′(t̃)|

∣∣∣∣ ddt̃
[
γ̃ ′(t̃)

|γ̃ ′(t̃)|

]∣∣∣∣ = |ϕ ′(t)|

|γ ′(t)|

∣∣∣∣ 1

ϕ ′(t)
· d
dt

[
|ϕ ′(t)|

ϕ ′(t)
· γ

′(t)

|γ ′(t)|

]∣∣∣∣
=

1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ . □
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One particular consequence of Theorem 3.1 is that it makes sense to speak of the curvature of a
curve, not only of a parametric curve. Furthermore, when computing the curvature, we have the
freedom to choose a pleasant parametrisation that makes the calculations as simple as possible.

Finally, we note that for unit-speed parametrisations, the formula (3.3) simplifies considerably:

Corollary 3.2. If γ : I→ Rn is a unit-speed parametrisation, then

(3.5) κ|γ(s) = |γ ′′(s)|, s ∈ I.

Proof. For this, we simply apply (3.3) and use that |γ ′(s)| = 1:

κ|γ(s) =
1

|γ ′(s)|

∣∣∣∣ dds
[
γ ′(s)

|γ ′(s)|

]∣∣∣∣ = ∣∣∣∣ dds [γ ′(s)]

∣∣∣∣ = |γ ′′(s)|. □

3.1.2. First Examples. In Definition 3.1, we put forward a definition of curvature for curves. But,
is this definition reasonable? Thus far, our arguments leading up to this definition seem to indicate
an affirmative answer. Here, we test Definition 3.1 further by applying it to some basic examples
in order to check whether we obtain the expected answers.

Example 3.1. Consider an arbitrary parametric line in Rn,

ℓ : R → Rn, ℓ(t) = tv + p,

where v,p ∈ Rn are fixed vectors. Observe that ℓ describes precisely the line passing through the
point p (when t = 0) and moving in the direction of v (which is equal to ℓ ′(t)).

To compute the curvature of ℓ, we first calculate

ℓ ′(t) = v, |ℓ ′(t)| = |v|, ℓ ′(t)

|ℓ ′(t)|
=

v
|v| .

Since all three of the above are constant, we see from Definition 3.1 that

κ|ℓ(t) =
1

|ℓ ′(t)|

∣∣∣∣ ddt
[
ℓ ′(t)

|ℓ ′(t)|

]∣∣∣∣ = 1

|v|

∣∣∣∣ ddt
(

v
|v|

)∣∣∣∣ = 0.

p

v x

y

ℓ

Figure 3.1. An instance of
ℓ (in red) from Example 3.1.
Here, p is drawn in green, while
v is shown in blue.

Example 3.1 shows that, as expected, a straight line has zero
curvature. Intuitively, we expect an even stronger statement—
we also expect the converse to also hold. Indeed, if a curve
has no curvature, then it should be straight, hence a line. We
prove precisely this in the following theorem:

Theorem 3.3. Let C be a curve in Rn. Then, C is a line if
and only if C has zero curvature.

Proof. Example 3.1 already showed that a line has zero cur-
vature, hence we need only show the converse. Suppose C has
zero curvature; our goal is to show that C is a line.

By Theorem 2.8, we can find a unit-speed parametrisation
γ̃ of C. Corollary 3.2 then implies

0 = κ|γ̃(s) = |γ̃ ′′(s)|, γ̃ ′′(s) = 0.
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To solve for γ̃, we integrate the above vector equation twice (component-wise) to obtain

γ̃ ′(s) = v, γ̃(s) = sv + p,

for some fixed vectors v,p ∈ Rn. Since this γ̃ is linear, C must indeed be a line. □

Next, we investigate another fundamental shape: circles.

Example 3.2. Let C denote the circle in R2 of radius R > 0 about the origin (see Figure 2.16).
One way to parametrise C is through the parametric curve

γ : R → R2, γ(t) = (R cos t, R sin t).

To compute the curvature of C, we observe that

γ ′(t) = (−R sin t, R cos t), |γ ′(t)| = R, γ ′(t)

|γ ′(t)|
= (− sin t, cos t).

Applying Definition 3.1 to the above yields

κ|γ(t) =
1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ = 1

R

∣∣∣∣ ddt(− sin t, cos t)
∣∣∣∣ = 1

R
|(cos t, sin t)| = 1

R
.

Thus, we obtain that the circle C has constant curvature equal to the inverse of its radius.

Let us understand this computation more intuitively. First, note that any point of the circle is
curved in the same way as any other point; this accounts for the fact that circles have constant
curvature. We next ask what accounts for the dependence of the curvature on the radius.

x

y

x

y

Figure 3.2. The plots show two circles of different radii (in red). On each
circle, the green arc has length 1. Note that on the larger circle (on the
right), the green arc turns less than on the smaller circle.

The key observation comes from the derivative
1

|γ ′(t)|
· d
dt

=
d

ds

in the definition (3.3) of curvature. Recall that this represents the rate of change per unit length.
As the radius of a circle increases, then an arc of unit length accounts for a smaller portion of the
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circle; see Figure 3.2. In other words, as the radius increases, then a particle traveling along the
circle will have turned less after travelling a unit length.

Thus, it makes intuitive sense for larger circles to have smaller curvature at each point. More
specifically, one can also see that the amount that this particle has turned after travelling a unit
length will be inversely proportional to the radius of the circle. This suggests that κ should be
inversely proportional to R, which confirms the answer we obtained from Example 3.2.

3.1.3. An Expanded Formula. We conclude this section by deriving an expanded formula for the
curvature. Before doing this, however, we first revise some basic facts from vector algebra.

Definition 3.2. Given two vectors

v = (v1, . . . , vn) ∈ Rn, w = (w1, . . . , wn) ∈ Rn,

we define their dot product by

(3.6) v · w = v1w1 + v2w2 + · · ·+ vnwn ∈ R.

Also, for two “arrows” v|p and w|p from a common point p ∈ Rn, we can similarly define

(3.7) v|p · w|p = v · w.

Remark. Note that while v and w are vectors, their dot product v · w is a scalar.

While equation (3.6) is usually the most convenient for computations, another formula for dot
products is more illuminating for obtaining geometric information:

Proposition 3.4. For v,w,p as in Definition 3.2, we have that

(3.8) v|p · w|p = v · w = |v||w| cos θ.

where θ is the angle made between the “arrows” v|p and w|p. In addition,

(3.9) |v|2 = v · v, |v|p|2 = v|p · v|p.

p

v

w
θ

Figure 3.3. This diagram demon-
strates the setup for (3.8).

See Figure 3.3 for a simple diagram describing (3.8).
This formula indicates that the dot product contains a
mixture of two pieces of geometric information:

(1) The lengths of the vectors involved.
(2) The angle between the vectors involved.

In the case of (3.9), since there is only one vector involved
(hence the angle θ vanishes), the dot product v ·v carries
information only about the length of v.

Next, since parametric curves take values in Rn, we
can also consider dot products involving them, which will
have similar geometric meaning as was mentioned above. For the moment, we will only require
the following identity, which can be proved using the product rule from basic calculus.
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Proposition 3.5. Let I be an open interval, and let λ : I→ Rn and α : I→ Rn be smooth. Then,

(3.10) d

dt
[λ(t) · α(t)] = λ ′(t) · α(t) + λ(t) · α ′(t), t ∈ I.

With the background from above, we can now derive a general formula for the curvature:

Proposition 3.6. Let γ : I→ Rn be a regular parametric curve, and let t ∈ I. Then,
d

dt

[
γ ′(t)

|γ ′(t)|

]
=

[γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t)

|γ ′(t)|3
,(3.11)

κ|γ(t) =
|[γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t)|

|γ ′(t)|4
.

Remark. Note that the quantity [γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t) in the numerator of the
right-hand side of (3.11) is a vector. For example, in the first term of the above, the scalar
γ ′(t) · γ ′(t) ∈ R is multiplied by the vector γ ′′(t) ∈ Rn; the product is then also a vector.

Proof. First, we apply (3.9) and the power rule to obtain
d

dt
|γ ′(t)| =

d

dt

√
γ ′(t) · γ ′(t) =

1

2
√
γ ′(t) · γ ′(t)

· d
dt

[γ ′(t) · γ ′(t)].

The derivative of the dot product can then be expanded using (3.10):

(3.12) d

dt
|γ ′(t)| =

2[γ ′(t) · γ ′′(t)]

2
√
γ ′(t) · γ ′(t)

=
γ ′(t) · γ ′′(t)

|γ ′(t)|
.

Now, from the product and power rules, we obtain
d

dt

[
γ ′(t)

|γ ′(t)|

]
=
γ ′′(t)

|γ ′(t)|
− γ ′(t)

d

dt

[
1

|γ ′(t)|

]
=
γ ′′(t)

|γ ′(t)|
−
γ ′(t) d

dt
|γ ′(t)|

|γ ′(t)|2
.

Applying (3.12) and (3.9) to the above now yields
d

dt

[
γ ′(t)

|γ ′(t)|

]
=
γ ′′(t)

|γ ′(t)|
−

[γ ′(t) · γ ′′(t)]γ ′(t)

|γ ′(t)|3

=
[γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t)

|γ ′(t)|3
,

which is the first part of (3.11). Finally, applying Definition 3.1, we obtain

κ|γ(t) =
1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ = |[γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t)|

|γ ′(t)|4
. □

Remark. Our only use for the identity (3.11) is to assist in deriving specialised formulas in the
cases of plane and space curves. We will not require (3.11) for any other purposes.

3.2. Plane Curves. In this section, we continue our study of curvature, but we specialise to the
case of curves on a plane. In other words, we assume throughout that n = 2.

3.2.1. The Curvature Formula. The first step is to return to the rather unpleasant formula (3.11).
We show below that for plane curves, the formula simplifies considerably.
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Theorem 3.7. Let γ : I→ R2 be a regular parametric curve, and express γ as

γ(t) = (x(t), y(t)), x, y : I→ R.

Then, for any t ∈ I,

(3.13) κ|γ(t) =
|x ′(t)y ′′(t) − y ′(t)x ′′(t)|

|γ ′(t)|3
.

Proof. For convenience, we drop all instances of “t” from the notations below. Expanding the
second formula of (3.11) in terms of x and y, we have that

κ|γ(t) =
|(γ ′ · γ ′)γ ′′ − (γ ′ · γ ′′)γ ′|

|γ ′|4

=
|(x ′x ′ + y ′y ′)(x ′′, y ′′) − (x ′x ′′ + y ′y ′′)(x ′, y ′)|

|γ ′|4

=
|(y ′y ′x ′′ − y ′y ′′x ′, x ′x ′y ′′ − x ′x ′′y ′)|

|γ ′(t)|4

=
|(x ′y ′′ − y ′x ′′)(−y ′, x ′)|

|γ ′|4

=
|x ′y ′′ − y ′x ′′| · |(−y ′, x ′)|

|γ ′|4
.

Since
|(−y ′, x ′)| =

√
(y ′)2 + (x ′)2 = |(x ′, y ′)| = |γ ′|,

the desired formula (3.13) follows immediately. □

To make remembering (3.13) easier, we recall the following from linear algebra:

Definition 3.3. For a 2× 2 matrix, we define its determinant by

(3.14) det

[
a b

c d

]
= ad− bc.

Then, using (3.14), we can rewrite (3.13) as:

(3.15) κ|γ(t) =
1

|γ ′(t)|3

∣∣∣∣∣det

[
x ′(t) y ′(t)

x ′′(t) y ′′(t)

]∣∣∣∣∣ .
Example 3.3. The curve representing the parabola y = x2 can parametrised by

γ : R → R2, γ(t) = (t, t2).

(See the left plot in Figure 3.4.) Let us compute its curvature at each point.
First, we note that

γ ′(t) = (x ′(t), y ′(t)) = (1, 2t), γ ′′(t) = (x ′′(t), y ′′(t)) = (0, 2),

as well as that
|γ ′(t)| =

√
1+ 4t2.
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Now, we simply substitute these values into (3.13):

κ|γ(t) =
|x ′(t)y ′′(t) − y ′(t)x ′′(t)|

|γ ′(t)|3
=

|1 · 2− 2t · 0|
(1+ 4t2)

3
2

=
2

(1+ 4t2)
3
2

.

Example 3.4. The “right half” of the hyperbola x2 − y2 = 1 can be parametrised by

γ : R → R2, γ(t) = (cosh t, sinh t).

(See the right plot in Figure 3.4.) Again, we compute its curvature at each point.
The first step is to compute its derivatives

γ ′(t) = (sinh t, cosh t), γ ′′(t) = (cosh t, sinh t), |γ ′(t)| =
√

cosh2 t+ sinh2 t.

Substituting these values into (3.13) and recalling that

cosh2 t− sinh2 t = 1,

we obtain the curvature of γ:

κ|γ(t) =
| sinh t sinh t− cosh t cosh t|

(cosh2 t+ sinh2 t) 3
2

=
1

(cosh2 t+ sinh2 t) 3
2

.
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Figure 3.4. The curves from Examples 3.3 and 3.4, respectively.

3.2.2. Signed Curvature. The primary reason plane curves are simpler than curves in higher-
dimensional spaces is that there are fewer directions in which a plane curve can turn. For example,
when you are driving a car, you can only turn it in two ways: left (anticlockwise) or right (clock-
wise). Similarly, in the abstract setting, an oriented parametric plane curve can potentially turn
in only two ways at any point: either anticlockwise or clockwise.

Thus, we can ask whether there is a simple way to capture not only how much a plane curve is
turning (given by its curvature κ), but also which way it is turning. Since this new information is
binary in nature (anticlockwise vs. clockwise), and since the curvature is always nonnegative, we
can conveniently encode the direction of turning as a sign (i.e. positive or negative) attached to
the curvature. This leads us to the following definition:

Definition 3.4. Let γ : I→ R2 be a regular parametric plane curve, and let t ∈ I. We define the
signed curvature of γ at the point γ(t) (or at the parameter t), denoted κs|γ(t), to be:
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• +κ|γ(t), if γ is turning anticlockwise at γ(t).
• −κ|γ(t), if γ is turning clockwise at γ(t).
• 0, if γ is not turning at γ(t) (that is, κ|γ(t) = 0).

In summary, we associate the (unsigned) curvature κ with a positive sign when γ is turning
anticlockwise, and we attach instead a negative sign when γ is turning clockwise.

Example 3.5. The parametrised parabola γ in Example 3.3 is turning anticlockwise at each of its
points; see the left plot in Figure 3.4. As a result, its signed curvature is given by

κs|γ(t) = +κ|γ(t) =
2

(1+ 4t2)
3
2

.

Example 3.6. On the other hand, the parametrised half-hyperbola γ in Example 3.4 is always
turning clockwise; see the right plot in Figure 3.4. Thus, its signed curvature is

κs|γ(t) = −κ|γ(t) =
−1

(cosh2 t+ sinh2 t) 3
2

.

To obtain the signed curvature using Definition 3.4, we would simply stare at the graph of a
parametric curve to see whether it is turning clockwise or anticlockwise, and we would adjust the
sign of the curvature accordingly. We can now ask whether there is a more computational method
for obtaining the signed curvature. An affirmative answer is provided in the following theorem:

Theorem 3.8. Let γ be as in Definition 3.4. Then, for any t ∈ I,

(3.16) κs|γ(t) =
x ′(t)y ′′(t) − y ′(t)x ′′(t)

|γ ′(t)|3
.

Proof. We begin with the first formula in (3.11), and we expand γ ′ in terms of x ′ and y ′:
d

dt

[
γ ′(t)

|γ ′(t)|

]
=

(x ′x ′ + y ′y ′)(x ′′, y ′′) − (x ′x ′′ + y ′y ′′)(x ′, y ′)

|γ ′|3

=
(x ′y ′′ − y ′x ′′)(−y ′, x ′)

|γ ′|3
.

Now, the left-hand side of the above indicates how the direction of γ is changing, i.e. which
direction γ is turning. Moreover, the vector (−y ′, x ′) on the right-hand side is simply the velocity
γ ′ = (x ′, y ′) rotated 90 degrees anticlockwise. Thus, we see that:

• Whenever x ′y ′′ − y ′x ′′ is positive, γ is turning anticlockwise (toward (−y ′, x ′)).
• Whenever x ′y ′′ − y ′x ′′ is negative, γ is turning clockwise (away from (−y ′, x ′)).
• Whenever x ′y ′′ − y ′x ′′ = 0, then κ = 0 by (3.13).

With the above in mind, we see that if we take the formula (3.13) for the curvature, and we remove
the absolute values around the numerator x ′y ′′−y ′x ′′ and consider instead (3.16), then we capture
precisely the direction that γ is turning in the sign of (3.16). □

Example 3.7. Consider the cardioid (see Figure 3.5), which can be parametrised as

γ : (0, 2π) → R2, γ(t) = ((1− cos t) cos t, (1− cos t) sin t).
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Suppose, for the time being, that a graph of γ was not readily available. Using (3.16), we can still
compute its signed curvature directly and hence determine its direction of turning.

First, we compute

γ ′(t) = (− sin t+ 2 cos t sin t, cos t− cos2 t+ sin2 t)

= (− sin t+ sin(2t), cos t− cos(2t)),
γ ′′(t) = (− cos t+ 2 cos(2t),− sin t+ 2 sin(2t)),

|γ ′(t)| =
√

[− sin t+ sin(2t)]2 + [cos t− cos(2t)]2

=
√
2− 2 sin t sin(2t) − 2 cos t cos(2t)

=
√
2− 2 cos t,

where in the above, we used the angle addition formulas [11]

sin(t+ u) = sin t cosu+ cos t sinu, cos(t+ u) = cos t cosu− sin t sinu.

Then, by Theorem 3.8 and the above, we obtain

κs|γ(t) =
[− sin t+ sin(2t)][− sin t+ 2 sin(2t)] − [cos t− cos(2t)][− cos t+ 2 cos(2t)]

[2+ 2(sin t+ cos t) sin(2t)] 32

=
3− 3 sin t sin(2t) − 3 cos t cos(2t)

(2− 2 cos t) 3
2

.

Applying the above angle addition formula and simplying, we conclude that

κs|γ(t) =
3− 3 cos t

(2− 2 cos t) 3
2

=
3

2
√
2
√
1− cos t

.

Finally, recalling the half-angle formula [11]

sin t
2
=

√
1− cos t

2
, 0 ≤ t < 2π,

the formula for the signed curvature simplifies to

κs|γ(t) =
3

4 sin t
2

.

In particular, note that κs is always positive, hence γ is rotating anticlockwise.
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γ

Figure 3.5. The paramet-
ric cardioid of Example 3.7.

Recall that the curvature is a geometric property of curves, in
that its value is independent of how a curve is parametrised. We
now ask the analogous question for the signed curvature.

Question 3.2. Is the signed curvature a geometric property of
curves, like the (unsigned) curvature?

That the answer to Question 3.2 is negative can be demon-
strated through the subsequent example:
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Example 3.8. Consider the following two parametrisations of the parabola y = x2:

γ1 : R → R2, γ1(t) = (t, t2),

γ2 : R → R2, γ2(t) = (−t, t2).

Notice that γ1 is precisely the parametric curve from Example 3.3, while γ2 is the parametric curve
obtained by reversing the orientation of γ1 (see Proposition 2.4).

Now, we already saw from Example 3.5 that

κs|γ1(t) =
2

(1+ 4t2)
3
2

> 0.

In particular, this reflects that the graph of γ1 (see the first plot in Figure 3.6) is turning anticlock-
wise. On the other hand, since γ2 is turning clockwise (see the second plot of Figure 3.6), then we
expect κs|γ2(t) to be everywhere negative. Indeed, another computation (which we omit here) yields

κs|γ2(t) =
−2

(1+ 4t2)
3
2

< 0.
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Figure 3.6. The parametrised parabolas γ1 and γ2 from Example 3.8.

A similar argument can be made for general plane curves. Indeed, if one reverses the orientation
of a curve, then the reversed curve will turn in the opposite direction as the original, just as in
Figure 3.6. This has the effect of negating the value of the signed curvature.

All this can be summarised more precisely in the following theorem:

Theorem 3.9. Let γ : I→ R2 be a regular parametric curve, and let γ̃ : Ĩ→ R2 be a reparametri-
sation of γ, with ϕ being the change of variables such that γ(t) = γ̃(ϕ(t)) for all t ∈ I. Then:

• If γ and γ̃ have the same orientation, then κs|γ̃(ϕ(t)) = κs|γ(t).
• If γ and γ̃ have the opposite orientations, then κs|γ̃(ϕ(t)) = −κs|γ(t).

In summary, the signed curvature fails to be a geometric property of curves, since it is changed by
reparametrisations that reverse the orientation. However, Theorem 3.9 shows that it is a property
of oriented curves, i.e. signed curvature is independent of orientation-preserving reparametrisations.



(MTH5109) LECTURE NOTES 51

3.2.3. Angular Displacement. Previously, we discussed how the signed curvature represents the
rate of change of the direction of an oriented curve, with additional information on which way the
curve is turning. One could equivalently think of this information as describing the rate of change
of the angle the curve is facing (say, with respect to the positive x-axis).

γ(t)

γ′(t)|γ(t)

(1, 0)|γ(t)θ(t)

x

y

γ

Figure 3.7. This plot shows how
θ(t) is defined from γ ′(t).

Intuitively, if we were to “add up” this change in the
angle along the entire curve, then we expect to recover
the total change in angle for the curve. Of course, you
might then ask what exactly it means to “add up” along
the curve. Fortunately, we have defined precisely this
notion earlier, namely, the path integral along the curve.

To study this more closely, consider a regular para-
metric curve γ : (a, b) → R2. Furthermore, for each
t ∈ (a, b), we let θ(t) denote the angle that γ relative
to the positive x-axis. More specifically, θ(t) is the polar
angle between the tangent vector γ ′(t)|γ(t) and (1, 0)|γ(t).
See Figure 3.7 for a graphical representation.

We now examine how θ changes with respect to t. In
particular, we make an explicit connection between the angle and the signed curvature:

Proposition 3.10. Let γ and θ be as above. Then, the following holds for any t ∈ I:

(3.17) θ ′(t) = κs|γ(t)|γ
′(t)|.

Proof. From the proof of 3.8, writing γ(t) = (x(t), y(t)), we had computed that
d

dt

[
(x ′(t), y ′(t))

|γ ′(t)|

]
=
d

dt

[
γ ′(t)

|γ ′(t)|

]
=

(x ′y ′′ − y ′x ′′)(−y ′, x ′)

|γ ′|3
.

Using (3.16) and decomposing the into components, the above becomes
d

dt

[
x ′(t)

|γ ′(t)|

]
= κs|γ(t) · (−y ′(t)), d

dt

[
y ′(t)

|γ ′(t)|

]
= κs|γ(t) · x ′(t).

Now, using a bit of trigonometry, we see that

cos θ(t) = x ′(t)

|γ ′(t)|
, sin θ(t) = y ′(t)

|γ ′(t)|
.

Substituting this into the two differential equations yields

− sin θ(t) · θ ′(t) =
d

dt
[cos θ(t)] = − sin θ(t) · κs|γ(t)|γ ′(t)|,

cos θ(t) · θ ′(t) =
d

dt
[sin θ(t)] = cos θ(t) · κs|γ(t)|γ ′(t)|.

Since either sin θ(t) or cos θ(t) is nonzero for any t, we can divide one of the above two equations
by sin t or cos t. This results in the desired formula (3.17). □
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Now that we have obtained how the angle of a parametric curve changes, we can integrate this
formula (3.17) and apply the fundamental theorem of calculus:

(3.18)
∫b
a

κs|γ(t)|γ
′(t)|dt =

∫b
a

θ ′(t)dt = θ(b) − θ(a).

Note that:
• The right-hand side of (3.18) gives the total change in angle of γ.
• Recalling the definition of path integrals (Definition 2.13), we see that the left-hand side

of (3.18) is the integral of the signed curvature κs along the curve represented by γ.
Combining these observations yields the following result:

Theorem 3.11. If C is an oriented curve, and if ∆θ is the total angular displacement in C, then

(3.19) ∆θ =

∫
C

κsds.

Moreover, if γ : (a, b) → R2 is a parametrisation of C (with the correct orientation), then (3.19),
written in terms of γ, is simply the previous formula (3.18).

Remark. To be precise, the path integral in (3.19) is not entirely like that in Definition 2.13.
In particular, if C is self-intersecting, then the integrand κs is multiple-valued at the intersection
points of C. However, this will not cause any problems in practice, since (3.18) is itself well-defined.

Example 3.9. Fix R > 0, and consider part of the parametric circle from Example 3.2,

γ : (a, b) → R2, γ(t) = (R cos t, R sin t).

Recall that we have computed that

|γ ′(t)| = R, κ|γ(t) =
1

R
.

Since γ is always turning anticlockwise, κs|γ(t) = 1
R

as well.
Applying (3.18) or (3.17), we obtain that

θ(b) − θ(a) =

∫b
a

κ|γ(t)|γ
′(t)|dt =

∫b
a

dt = b− a.

In other words, if one traverses the segment of the unit circle given by γ, then one will have turned
anticlockwise by exactly an angle of b− a.

In particular, if a = 0 and b = 2π, corresponding to exactly one anticlockwise rotation around
the circle, then the total angular displacement of γ is exactly 2π− 0 = 2π, which is sensible, since
γ has made exactly one anticlockwise rotation about the origin.

More generally, if we set a = 0 and b = 2πm, then this corresponds to γ making m anticlockwise
revolutions around the circle. As expected, the total angular displacement is b− a = 2πm.

3.2.4. The Winding Number. Next, we can transform Example 3.9 into a rather general observa-
tion. For this, we consider oriented curves that are periodic:
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Definition 3.5. A parametric curve γ : R → Rn is closed iff there exists b > 0 such that

(3.20) γ(t+ b) = γ(t), t ∈ R.

Moreover, when γ is closed, the smallest b such that (3.20) holds is called the period of γ.

x

y γ

Figure 3.8. An example
of a closed curve.

In short, a closed parametric curve is one that starts repeating
itself after t has increased by b. For such a closed γ, if one begins
at γ(0) and travels along the curve, then one returns to γ(0) when
t = b, and this motion repeats itself afterwards.

A simple graphical example of a closed parametric curve γ in
a plane is depicted in Figure 3.8. Let b be the period of γ, and
suppose the green dot on the x-axis corresponds to γ(0). As t
increases, the point γ(t) would move anticlockwise along the red
curve. One returns once again to the green dot at γ(b), and the
parametrisation continues in a periodic fashion.

Moreover, if t is decreasing instead, then one would move clock-
wise, returning to the green dot at γ(−b).

Example 3.10. Consider the usual parametric unit circle

γ : R → R2, γ(t) = (cos t, sin t).

Recall that if we start from t = 0, then γ begins from γ(0) = (1, 0) and traverses the unit circle
anticlockwise. This continues until t = 2π, when γ returns to its starting point (1, 0). After this,
γ starts repeating itself. Thus, γ is closed, with period 2π.

A more intuitive way to model a closed parametric curve is as a smooth loop, that is:
• The starting and terminal points of the parametric curve are the same.
• The starting and terminal points are joined in a smooth manner.

However, we elect to remain with Definition 3.5, as it is slightly easier to use in practice.

Definition 3.6. Let γ : R → R2 be a closed parametric curve, with period b > 0. We then define
the winding number of γ to be given by the formula

(3.21) N(γ) =
1

2π

∫b
0

κs|γ(t)|γ
′(t)|dt =

1

2π

∫
C

κsds,

where C is the curve represented by γ.

Let us see what this winding number means. By Theorem 3.11, we have that

(3.22) N(γ) =
1

2π

∫b
0

κs|γ(t)|γ
′(t)|dt =

1

2π
[θ(b) − θ(0)],

where θ is the polar angle of γ, as before. Now, since γ has period b, then γ ′(b) and γ ′(0) must
be the same and hence have the same angle. It then follows that

θ(b) − θ(0) = 2πm, m ∈ Z.
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Now, what does this integer m represent? To answer this, we recall that θ(b) − θ(0) represents
the total angle displacement along one period of γ. Observe then that:

• If γ revolves anticlockwise exactly once, then this total angle displacement is 2π.
• If γ revolves clockwise exactly once, then this total angle displacement is −2π.
• If γ revolves anticlockwise m times, then this total angle displacement is 2πm.

In other words, if we divide this total angular displacement θ(b) − θ(0) by 2π, we obtain the
number of times, m, that γ has revolved anticlockwise. Combining this with (3.22) yields:

Theorem 3.12. Assume the setting of Definition 3.6. Then, the winding number N(γ) is precisely
the number of times γ revolves anticlockwise in one period.

Let us look at a couple simple examples:

Example 3.11. Consider the closed parametric curve from Example 3.10,

γ : R → R2, γ(t) = (cos t, sin t).

Recall that γ has period 2π, and

|γ ′(t)| = 1, κs|γ(t) = 1.

Thus, the winding number of γ is given by

N(γ) =
1

2π

∫ 2π
0

1 · 1 · dt = 1.

This matches the intuition from Theorem 3.12, since γ indeed revolves precisely once anticlockwise
about the origin within one period, say 0 < t < 2π.

Example 3.12. Consider next the “squashed trefoil knot”, parametrised as

γ : R → R2, γ(t) = (sin t+ 2 sin(2t), cos t− 2 cos(2t)).

A graph of this is given in Figure 3.9; if we inspect this graph, we see that in one period, γ makes
exactly two anticlockwise revolutions. Therefore, by Theorem 3.12, its winding number is

N(γ) = +2.

We can also try to compute N(γ) via its definition as an integral. In this direction, we obtain∫ 2π
0

κs|γ(t)|γ
′(t)|dt =

∫ 2π
0

31+ 4 cos(3t)
17+ 8 cos(3t)

dt,

after some irritating computations for γ ′, |γ ′|, γ ′′, and κs. Now, you may find the integral on
the right-hand side quite tricky to evaluate using the usual calculus tricks. On the other hand, by
counting the revolutions that γ makes and applying Theorem 3.12, we quite easily obtain∫ 2π

0

31+ 4 cos(3t)
17+ 8 cos(3t)

dt = 2π ·N(γ) = 4π.

Observe that since the signed curvature κs and the path integral are properties of oriented
curves and curves, respectively, then Definition 3.6 shows that the winding number is a property



(MTH5109) LECTURE NOTES 55

of oriented loops. However, the characterisation of the winding number in Theorem 3.12 leads to
an even bolder claim: that the winding number is a topological property.
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Figure 3.9. The left plot contains the “squashed trefoil” from Example
3.12, while the loop in the right plot is a slight deformation of that on the
left. Note that both loops have the same winding number +2.

Recall from our discussion in Chapter 1 that topological properties are roughly those that are
preserved by “deformations”. In the current setting, suppose we have a closed parametric curve
γ, whose winding number is N(γ) = m, so that γ revolves m times anticlockwise in one period.
If we then deformed γ by a small amount by “pulling” or “compressing” it (see the second plot
in Figure 3.9), then the deformed loop will still revolve m times anticlockwise. In this way, the
winding number is invariant under deformations and hence is a topological property.

One should take a bit of time to reflect on how surprising this is at first glance. On one hand,
the winding number is defined in very geometric terms, in particular via the signed curvature; to
compute these quantities, one must take numerous derivatives. On the other hand, Theorem 3.12
indicates that the winding number is in fact independent of these geometric considerations, i.e. of
the shape and size of the loop. Thus, in effect, the winding number provides one hidden connection
between the areas of differential geometry and topology.

3.3. Space Curves. In the previous section, we studied the special case of curves in the plane.
We now consider the next simplest case—curves in 3-dimensional space.

One of the main features of (oriented) plane curves was that at any point, they can only turn
in two ways: anticlockwise and clockwise. For space curves, however, this is no longer the case. In
fact, there is now an additional dimension in which any curve could potentially turn. This means
that to capture the shapes of space curves, one needs a different set of information than before.

3.3.1. The Curvature Formula. Let us first start by deriving a more refined formula for the cur-
vature (from Definition 3.1) which is specialised to space curves. Before we do this, however, we
first revise an additional bit of vector algebra that is specific to three dimensions.

Definition 3.7. Given two vectors

v = (v1, v2, v3) ∈ R3, w = (w1, w2, w3) ∈ R3,

we define its cross product to be the vector

(3.23) v × w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1) ∈ R3.
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Moreover, for two “arrows” v|p and w|p from a common point p ∈ R3, we can define

(3.24) v|p × w|p = (v × w)|p.

Remark. If you are comfortable with 3× 3-matrices and their determinants, then one easy way to
remember formula (3.23) is to express it heuristically in the form

v × w = det

 i j k
v1 v2 v3

w1 w2 w3

(3.25)

= det

[
v1 v2

w1 w2

]
i − det

[
v1 v3

w1 w3

]
j + det

[
v2 v3

w2 w3

]
k,

where
i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

To see why cross-products are useful, we recall the following geometric characterisation of it:

Proposition 3.13. For v,w,p as in Definition 3.7, the product v|p × w|p is such that:
• If v|p and w|p lie on the same line, then v|p × w|p = 0.
• Otherwise, v|p × w|p points in the direction that is perpendicular to both v|p and w|p and

satisfies the right-hand rule. Furthermore, the norm of v|p × w|p satisfies

(3.26) |v|p × w|p| = |v||w| sin θ,

where θ is the angle made between the “arrows” v|p and w|p.

In particular, if you already have vectors which span two of the three dimensions of the space,
then the cross product provides a simple, computable way to generate the third dimension.
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Figure 3.10. The diagrams demonstrate cross products of vectors, repre-
sented here as arrows beginning at the origin.

Figure 3.10 contains some graphical examples of cross products, with all vectors represented as
arrows from the origin. In particular, the left and right plots depict, respectively,

v = (1, 0, 0), w = (0, 1, 0), v × w = (0, 0, 1),
v = (1, 1,−1), w = (−1, 1, 0), v × w = (1, 1, 2).
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Remark. Keep in mind that cross products are specific to 3-dimensional space! Although there do
exist generalisations of cross products to other dimensions (see, for example, Hodge duals), these
are not in the form of a vector-valued product of two vectors.

We recall one additional algebraic property involving cross products:

Proposition 3.14. Given any a,b, c ∈ R3, the following identity holds:

(3.27) a × (b × c) = (a · c)b − (a · b)c.

Proof. Check it yourself! :) □

We can now state our refined curvature formula for space curves:

Theorem 3.15. Let γ : I→ R3 be a regular parametric space curve. Then, for any t ∈ I,

(3.28) κ|γ(t) =
|γ ′(t)× γ ′′(t)|

|γ ′(t)|3
.

Proof. We begin once again with (3.11) and now recall (3.27):

κ|γ(t) =
|[γ ′(t) · γ ′(t)]γ ′′(t) − [γ ′(t) · γ ′′(t)]γ ′(t)|

|γ ′(t)|4

=
|γ ′(t)× [γ ′′(t)× γ ′(t)]|

|γ ′(t)|4
.

By Proposition 3.13, we see that γ ′(t) is perpendicular to γ ′′(t)× γ ′(t), and hence

κ|γ(t) =
|γ ′(t)| · |γ ′′(t)× γ ′(t)|

|γ ′(t)|4
=

|γ ′′(t)× γ ′(t)|

|γ ′(t)|3
,

where we applied (3.26) in the first step. □

Example 3.13. Consider the helix (see Figure 3.11), parametrised by

γ : R → R3, γ(t) = (cos t, sin t, t).

Let us compute its curvature using Theorem 3.15.
First, direct computations show that

γ ′(t) = (− sin t, cos t, 1), γ ′′(t) = (− cos t,− sin t, 0), |γ ′(t)| =
√
2.

Moreover, we compute the required cross-product in (3.28):

γ ′(t)× γ ′′(t) = (cos t · 0+ sin t · 1,−1 · cos t+ sin t · 0, sin t · sin t+ cos t · cos t)

= (sin t,− cos t, 1),

|γ ′(t)× γ ′′(t)| =
√
2.

Therefore, applying Theorem 3.15, we see that

κ|γ(t) =
|γ ′(t)× γ ′′(t)|

|γ ′(t)|3
=
1

2
.
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Remark. In the case of Example 3.13, it is probably easier to apply Definition 3.1 directly:

κ|γ(t) =
1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ = 1

2

∣∣∣∣ ddt(− sin t, cos t, 1)
∣∣∣∣ = 1

2
|(− cos t,− sin t, 0)| = 1

2
.

Of course, this will not always be the case (for instance, the next example).

−2 −1
1

2

−2

2

−10

10

x

y

z γ

5
10−2

2

5

x

y

z
γ

Figure 3.11. The left plot is the helix from Example 3.13, while the right
plot is the parametric curve γ from Example 3.14.

Example 3.14. Consider the parametric curve (see Figure 3.11)

γ : (0,∞) → R3, γ(t) = (2
√
2et, 2t, e2t).

To compute its curvature, we first calculate

γ ′(t) = (2
√
2et, 2, 2e2t),

γ ′′(t) = (2
√
2et, 0, 4e2t),

|γ ′(t)| =
√
8e2t + 4+ 4e4t = 2(1+ e2t).

Furthermore, for the requisite cross product, we have

γ ′(t)× γ ′′(t) = (8e2t − 0, 4
√
2e3t − 8

√
2e3t, 0− 4

√
2et)

= 4
√
2et(

√
2et,−e2t,−1),

|γ ′(t)× γ ′′(t)| = 4
√
2et
√
2e2t + e4t + 1

= 4
√
2et(1+ e2t).

Thus, by Theorem 3.15, we obtain

κ|γ(t) =
|γ ′(t)× γ ′′(t)|

|γ ′(t)|3
=
4
√
2et(1+ e2t)

8(1+ e2t)3
=

et√
2(1+ e2t)2

.

3.3.2. Torsion. Up to this point, we have characterised the shape of a space curve, represented by
a regular parametric curve γ : I→ R3, in two directions:

• The direction γ is heading, represented by γ ′.
• The direction γ is bending, represented by γ ′′.
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Furthermore, recall the curvature κ of γ measures the magnitude of the bending of γ.
Let us assume for now that κ|γ(t) ̸= 0. By (3.28), it follows that

γ ′(t)× γ ′′(t) ̸= 0,

and Proposition 3.13 implies γ ′(t) and γ ′′(t) are pointing in different directions. As a result of
this, γ ′(t)|γ(t) and γ ′′(t)|γ(t) together span a plane through γ(t), called the osculating plane. This
setup is demonstrated by the two plots in Figure 3.12.
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Figure 3.12. The left plot shows a parametric space curve γ (in red), with
γ ′(t)|γ(t) and γ ′′(t)|γ(t) indicated at a single point. The right plot shows the
same γ along with its osculating plane at the same point.

Observe that in R3, we have an additional direction that is normal to this osculating plane.
Thus, for space curves, there is one more piece of information that we must examine: the torsion
of γ, that is, the tendency of γ to move away from the osculating plane.

Question 3.3. How can we quantify this torsion of γ? Moreover, can we make this quantity a
geometric property of curves, that is, can we make it independent of parametrisation?

From Proposition 3.13, the remaining direction normal to the osculating plane is represented by

γ×(t)|γ(t) = γ
′(t)|γ(t) × γ ′′(t)|γ(t) ̸= 0.

To capture the motion of γ in the γ×(t)-direction, we must look at the γ×(t)-component of the
next order of γ: its third derivative (in particular, since γ×(t) is perpendicular to γ ′(t) and γ ′′(t),
neither γ ′(t) nor γ ′′(t) has a γ×(t)-component). More specifically, we must measure the quantity

(3.29) γ×(t) · γ ′′′(t) = [γ ′(t)× γ ′′(t)] · γ ′′′(t).

However, we cannot use (3.29) as the definition of torsion. This is because we also want the tor-
sion to be independent of parametrisation, and (3.29) will fail to have this property. Consequently,
we further adjust (3.29) to end up with the following definition of torsion.

Definition 3.8. Let γ : I → R3 be a regular parametric space curve, fix t ∈ I, and suppose that
κ|γ(t) ̸= 0. We then define the torsion of γ at γ(t) (or at the parameter t) to be

(3.30) τ|γ(t) =
[γ ′(t)× γ ′′(t)] · γ ′′′(t)

|γ ′(t)× γ ′′(t)|2
.
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As we will see below, the factor |γ ′(t)×γ ′′(t)|−2 is precisely what is needed so that the quantity
is independent of parametrisation. We will prove this further below in Theorem 3.16. For the
moment, however, let us first consider a couple examples.

Example 3.15. Let us return to the helix from Example 3.13,

γ : R → R3, γ(t) = (cos t, sin t, t).

Recall that γ has nonzero curvature at each point, so that its torsion is everywhere well-defined.
From Example 3.13, we have that

γ ′(t) = (− sin t, cos t, 1), γ ′′(t) = (− cos t,− sin t, 0), γ ′′′(t) = (sin t,− cos t, 0).

Recall also from Example 3.13 that

γ ′(t)× γ ′′(t) = (sin t,− cos t, 1), |γ ′(t)× γ ′′(t)| =
√
2.

Combining the above with Definition 3.8, we calculate that

τ|γ(t) =
(sin t,− cos t, 1) · (sin t,− cos t, 0)

2
=
1

2
.
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Figure 3.13. The left plot is the helix from Example 3.15, while the right
plot is the parametric curve γ from Example 3.16.

Example 3.16. Consider now the parametric curve

γ : R → R3, γ(t) = (t, t2, t3).

Again, let us compute the torsion of γ.
First, computing its derivatives, we see that

γ ′(t) = (1, 2t, 3t2), γ ′′(t) = (0, 2, 6t), γ ′′′(t) = (0, 0, 6).

Furthermore, taking a cross product we see that

γ ′(t)× γ ′′(t) = (6t2,−6t, 2), |γ ′(t)× γ ′′(t)|2 = 4+ 36t2 + 36t4.

Finally, applying Definition 3.8 and the above yields

τ|γ(t) =
(6t2,−6t, 2) · (0, 0, 6)
36t4 + 36t2 + 4

=
3

9t4 + 9t2 + 1
.
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Finally, we conclude by confirming that the torsion is indeed a geometric property of curves:

Theorem 3.16. Assuming the setting of Definition 3.8, then the right hand side of (3.30) is
independent of parametrisation. More specifically, if γ̃ : Ĩ → Rn be a reparametrisation of γ, and
if ϕ : I→ Ĩ is the change of variables satisfying γ(t) = γ̃(ϕ(t)) for all t ∈ I, then

(3.31) [γ ′(t)× γ ′′(t)] · γ ′′′(t)

|γ ′(t)× γ ′′(t)|2
=

[γ̃ ′(t̃)× γ̃ ′′(t̃)] · γ̃ ′′′(t̃)

|γ̃ ′(t̃)× γ̃ ′′(t̃)|2
, t̃ = ϕ(t).

Proof. By the chain rule (see also Theorem 2.3), we have that

γ ′(t) =
d

dt
[γ̃(ϕ(t))] = ϕ ′(t)γ̃ ′(t̃),

γ ′′(t) =
d2

dt2
[γ̃(ϕ(t))] = [ϕ ′(t)]2γ̃ ′′(t̃) +A(t)γ̃ ′(t̃),

γ ′′′(t) =
d3

dt3
[γ̃(ϕ(t))] = [ϕ ′(t)]3γ̃ ′′′(t̃) + B(t)γ̃ ′′(t̃) + C(t)γ̃ ′(t̃),

where A(t), B(t), and C(t) are some functions of t (however, we need not know their exact forms
here). Now, since γ̃ ′(t̃)× γ̃ ′(t̃) = 0, a quick computation yields that

γ ′(t)× γ ′′(t) = ϕ ′(t)γ̃ ′(t̃)× [ϕ ′(t)]2γ̃ ′′(t̃) + ϕ ′(t)γ̃ ′(t̃)×A(t)γ̃ ′(t̃)

= [ϕ ′(t)]3[γ̃ ′(t̃)× γ̃ ′′(t̃)].

Furthermore, since γ̃ ′(t̃)× γ̃ ′′(t̃) is perpendicular to both γ̃ ′(t̃) and γ̃ ′′(t̃), we obtain

[γ ′(t)× γ ′′(t)]× γ ′′′(t) = [ϕ ′(t)]3[γ̃ ′(t̃)× γ̃ ′′(t̃)] · [ϕ ′(t)]3γ̃ ′′′(t̃)

+ [ϕ ′(t)]3[γ̃ ′(t̃)× γ̃ ′′(t̃)] · B(t)γ̃ ′′(t̃)

+ [ϕ ′(t)]3[γ̃ ′(t̃)× γ̃ ′′(t̃)] · C(t)γ̃ ′(t̃)

= [Φ ′(t)]6[γ̃ ′(t̃)× γ̃ ′′(t̃)] · γ̃ ′′′(t̃).

Combining the above results in the desired equality (3.31):
[γ ′(t)× γ ′′(t)] · γ ′′′(t)

|γ ′(t)× γ ′′(t)|2
=

[Φ ′(t)]6[γ̃ ′(t̃)× γ̃ ′′(t̃)] · γ̃ ′′′(t̃)

[|Φ ′(t)|3|γ̃ ′(t̃)× γ̃ ′′(t̃)|]2

=
[γ̃ ′(t̃)× γ̃ ′′(t̃)] · γ̃ ′′′(t̃)

|γ̃ ′(t̃)× γ̃ ′′(t̃)|2
. □

3.3.3. The Geometry of Space Curves. Here, we complete our study of space curves by engaging in a
somewhat informal discussion on how curvature and torsion affect geometry. The informal nature
is partly by necessity, since some of the material requires additional background in differential
equations (see the module MTH5123: Differential Equations) to explore fully.

We begin by first thinking about the case when the torsion vanishes. Since torsion measures the
tendency of the curve to veer away from its osculating plane, zero torsion should imply that the
curve stays on this plane. Moreover, as the curve is not twisting away from its osculating plane,
this plane itself should remain the same along the curve. Consequently, a reasonable guess would
be that any curve with vanishing torsion must itself remain within some plane.

The following theorem confirms our educated guess:
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Theorem 3.17. Let C be a space curve with non-vanishing curvature. Then, C has zero torsion
everywhere if and only if C lies in some plane P ⊆ R3.

The proof uses a fair amount of calculus and linear algebra (though not beyond the background
required for this module), hence we only sketch it here without all the details.

Proof. Throughout, we let γ : I→ R3 be a regular parametrisation of C. Suppose first that C lies
on a plane P. Then, at any t ∈ I, we have that γ ′(t)|γ(t), γ ′′(t)|γ(t), and γ ′′′(t)|γ(t) all lie along P.
By Proposition 3.13, the cross product γ ′(t)|γ(t) × γ ′′(t)|γ(t) is normal to P, and hence

τ|γ(t) =
[γ ′(t)× γ ′′(t)] · γ ′′′(t)

|γ ′(t)× γ ′′(t)|2
= 0.

Assume next that C has zero torsion everywhere. First, we claim that γ ′×γ ′′ is always pointing
in the same direction. Assuming this claim for the moment, it then follows that γ ′ and γ ′′, which
are perpendicular to γ ′ × γ ′′, must always lie within a plane. Since γ ′ lies within a plane, then γ
can only be moving in a 2-dimensional set of directions, hence γ lies in a plane P as well.

It remains to prove the aforementioned claim. For this, we compute that
d

dt
[γ ′(t)× γ ′′(t)] · γ ′(t) = [γ ′′(t)× γ ′′(t)] · γ ′(t) + [γ ′(t)× γ ′′′(t)] · γ ′(t)

= [γ ′(t)× γ ′′′(t)] · γ ′(t)

= 0,
d

dt
[γ ′(t)× γ ′′(t)] · γ ′′(t) = [γ ′(t)× γ ′′′(t)] · γ ′′(t)

= −[γ ′(t)× γ ′′(t)] · γ ′′′(t)

= −τ|γ(t)|γ
′(t)× γ ′′(t)|2

= 0.

In other words, d
dt
[γ ′(t) × γ ′′(t)] has no component in the γ ′(t)- and γ ′′(t)-directions, hence it

must be pointing purely in the direction normal to γ ′(t) and γ ′′(t), i.e. γ ′(t) × γ ′′(t). Thus, we
conclude that γ ′(t)× γ ′′(t) only changes along the [γ ′(t)× γ ′′(t)]-direction, that is, γ ′(t)× γ ′′(t)

is always pointing in the same direction. This proves the claim and hence the theorem. □

Example 3.17. Consider the parametric curve (see Figure 3.14)

γ : R → R3, γ(t) = (t, t2, t2).

Computing its derivatives, we obtain

γ ′(t) = (1, 2t, 2t), γ ′′(t) = (0, 2, 2), γ ′′′(t) = (0, 0, 0).

Since γ ′′′ vanishes, then the torsion vanishes as well:

τ|γ(t) =
[γ ′(t)× γ ′′(t)] · γ ′′′(t)

|γ ′(t)× γ ′′(t)|2
= 0.

Alternatively, one could observe that γ lies in the plane y = z. (Indeed, the y- and z-components
of γ(t) are always identical.) Thus, Theorem 3.17 also yields that γ has zero torsion.
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Figure 3.14. The parametric curve γ from Example 3.17. The left plot
contains only γ, while the right plot shows γ is contained in the plane y = z.

We now expand the discussion to general torsions. The rough intuition is that the curvature
describes the bending of a curve on the osculating plane, while the torsion describes its tendency
to move in the direction normal to this plane. Since this exhausts all three dimensions, one might
expect that the shape of the curve should be determined by its curvature and torsion. This idea
is described more precisely in the statement of the following theorem:

Theorem 3.18. Let C be a space curve with non-vanishing curvature. If we know
• the curvature and torsion of C everywhere,
• the position of a single point of C,
• the direction of C at that (same) point, and
• the direction that C is bending at that (same) point,

then we know exactly what C is, that is, we can reconstruct the entire curve C.

The key idea of the proof is to solve a system of (ordinary) differential equations for C. In
particular, basic results from differential equations imply that given the information from Theorem
3.18, there is a unique solution to the system that determines precisely what C is. (For details,
see discussions on Frenet–Serret formulas, for example in previous years’ lecture notes [4, 6].)

Another way to interpret Theorem 3.18 is as follows: if we know the curvature and torsion of C,
then we know C itself, excepting the initial position, direction, and direction of bending of C. To
demonstrate this more concretely, we consider the helix H from Examples 3.13 and 3.15; a graph
is given again in the first plot of Figure 3.15. Recall we computed in those examples that the
curvature and torsion of H are constant: 1

2
at every point.

Now, suppose we shift H to a different position, as in the second plot of Figure 3.15. Since the
shifted helix has the same shape as H, another round of computations will show, unsurprisingly,
that the shifted helix will have curvature and torsion 1

2
at every point. In other words, given only

the curvature and torsion, we cannot distinguish two helices beginning from different locations.
Similarly, rather than shifting H, we rotate H so that it is initially moving in a different direction,

as in the third plot of Figure 3.15. Again, rotations preserve the shape of the helix, so the rotated
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helix will again have curvature and torsion 1
2
. Thus, knowing only the curvature and torsion does

not allow one to distinguish between H and the rotated helix.
Finally, even if two helices begin from the same position and with the same direction, they will

still retain the same shape—and hence curvature and torsion—if they initially bend in different
ways. This can be visualised by “twisting” H about a single point; see Figure 3.15.
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Figure 3.15. The top left plot contains the helix H from Examples 3.13
and 3.15. The top right, bottom left, and bottom right plots depict H
shifted to a different position, H rotated about (1, 0, 0), and H “twisted”
about (1, 0, 0)—so that only the direction of bending at (1, 0, 0) is altered.

Thus, to conclude, we see that for space curves that are bending (i.e. with nonzero curvature),
the information within Theorem 3.18 suffices to fully determine the geometry of the curve.

3.4. Notes on Intrinsic Geometry. We conclude our discussion of curve geometry by revisiting
the notion of intrinsic geometry that was informally introduced in Chapter 1. Though we remain
informal in our approach, we now take a more detailed look at the following fundamental question:

Question 3.4. Given a curve C, what are the possible intrinsic geometries that C could have? In
other words, can we classify all the possible intrinsic geometries of curves?

Again, we do not have the space or the technical background to formally define what we mean
by intrinsic geometry. However, as an intuitive guide, we resort to the thought experiment of a
bug who resides on a curve without awareness of any larger space in which the curve is embedded:

• The bug is aware of its “intrinsic velocity”, that is, it is aware of (a) which of the two ways
along the curve it is going, and (b) how fast it is going.

• (On the other hand, the bug does not identify either of the two directions as being special.
In formal terminology, we do not fix an orientation for the curve.)

• In particular, by traversing the curve and integrating its speed over time (yes, the bug is
capable of doing integrals), the bug can measure the distance it has travelled.
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• In its quest to gather information about the curve, the bug is allowed to wander around
the curve for all of eternity. Moreover, the bug remembers where it has been and how it
has travelled in the past, and it is aware if it returns to a point it has previously visited.

3.4.1. Curve Types. Let us begin by listing the “types” of curves that we can come across:
(1) Curves extending indefinitely in both directions.
(2) Curves that terminate along one direction but extend indefinitely in the other direction.
(3) Curves with endpoints in both directions.
(4) Closed curves, i.e. loops.

An example of each of the four types is drawn in Figure 3.16. Note that by how we defined our
bug, it is capable of distinguishing among these four configurations and determining which of the
four it is living in. Indeed, the bug needs only venture out arbitrarily far in both directions.

Figure 3.16. The different “types” of curves: (1) infinite in both directions,
(2) infinite in one direction, (3) finite in both directions, and (4) closed.

More specifically, the bug will eventually determine whether the curve is “type (2)” or “type
(3)” if it hits an endpoint on either or both ends. Similarly, if the bug ventures far enough and
returns to a previously visited point, then the curve is “type (4)”. If the bug never hits an endpoint
or travels in a loop, then the curve must be “type (1)”.

Note that the bug will need an eternity to determine for certain whether a curve is “type (1)”
or “type (2)”. But in our hypothetical situation here, this is allowed.

3.4.2. Analysis of Curve Types. Now that we have distinguished four types of curves above, let us
further analyse each type and see what kinds of intrinsic geometries are possible.
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Consider first curves of “type (1)” that extend infinitely in both directions. Suppose C1 and C2
are any two such curves. Then, a bug on either curve can crawl indefinitely in either direction
without hitting a dead end or returning to its starting point. Consequently, as long as they are
unaware of how C1 and C2 are situated in a larger space, these two bugs would have exactly
the same experience. Our bug argument thus suggests that C1 and C2 have the same intrinsic
geometry; more generally, any two curves of “type (1)” have the same intrinsic geometry.

A similar argument can be made for “type (2)” curves, which extend infinitely in one direction
but terminate finitely in the other. If C1 and C2 are two such curves, then a bug on either curve
will eventually hit a dead end in one direction, but can crawl indefinitely in the other direction.
Thus, again, bugs on C1 and C2 will have the exact same experience. (Again, since we do not
highlight one direction over the other in either curve, it does not matter which direction of C1 or
C2 contains the dead end.) Thus, any two “type (2)” curves have the same intrinsic geometry.

Now, consider “type (3)” curves. A bug exploring such a curve will encounter dead ends in both
directions. It will then be able to measure the distance between the two dead ends. In particular,
bugs on two such curves C1 and C2 will have identical experiences only if they both measure the
same length between endpoints. In other words, two “type (3)” curves have the same intrinsic
geometry if and only if they have the same arc length.

Finally, the case of “type (4)” curves is similar to the preceding case. Once the bug discovers
that it is on a closed curve, it can measure the distance required to travel once around the loop.
Again, the bug can distinguish between two closed curves with different lengths—two “type (4)”
curves have the same intrinsic geometry if and only if they have the same length (per cycle).

3.4.3. Conclusions. Thus, putting together the results of our rather informal thought experiment
with bugs, we conclude that the intrinsic geometry of curves is determined by the following factors:

• The “type” of curve: (1), (2), (3), or (4).
• The length of the curve (only in (3) or (4), where the length is finite).

More specifically, all the possible intrinsic geometries are listed below:
• “Type (1)” curve.
• “Type (2)” curve.
• “Type (3)” curve of length L, for every L > 0.
• “Type (4)” curve of length L, for every L > 0.

In particular, there are very few properties that distinguish intrinsic geometry. Indeed, many
of the properties of curves that we have studied—such as curvature and torsion—are extrinsic in
nature, that is, these relate only to how the curve is embedded in a larger space.

Exercise 3.1. How does the answer to Question 3.4 change if we consider oriented curves instead?
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4. An Introduction to Knot Theory

In previous chapters, we were concerned with studying geometry of curves. We were mainly
concerned with geometric properties—roughly, those which depended only on the shape, size, and
position of a curve. In particular, we concluded by studying, and quantifying, the shape of space
curves, that is, curves lying in R3. For this chapter, we continue working with space curves, but
we now ask questions that are of a very different nature:

Question 4.1. In what ways can we tie a rope into a knot? How do we tell different knots apart?

These are some foundational questions for a field of mathematics known as knot theory. In this
chapter, we give a brief introduction to some basic elements of this theory.

4.1. What is a Knot? Before we can begin to address Question 4.1 in a mathematical manner,
we must first make all of these notions precise:

Question 4.2. How do we mathematically define, or model, a knot?

Before we get to the actual definition, which may seem quite technical at first glance, we first
explore the various considerations which lead to our eventual definition.

4.1.1. Knots as Topological Objects. If you think in terms of the real world, then you would most
likely envision a knot as a rope or string wrapped around itself. Mathematically, such a rope could
be modelled as curved one-dimensional objects—the curves described in Chapters 2 and 3.

Figure 4.1. The drawings depict three curves; the leftmost curve is “un-
tied”, while the remaining two curves are “tied into a knot”.

For example, the curves in Figure 4.1 could be thought of as representing knots:
• The left curve represents an untied rope—a trivial or untied knot.
• The other two curves represent ropes which contain a simple knot.

However, take a closer look at the middle and right curves. Since they are positioned and curved
differently, they clearly have different geometric properties. On the other hand, you would still
intuitively consider them to represent the same knot, since they are “tied the same way”.

More specifically, by “pulling on various parts of the middle curve”, we can deform it into the
right curve without altering the fundamental structure of the knot (which we have yet to define).
Because knot are intuitively impervious to such deformations, we conclude that the structure of a
knot is a topological, and not geometric, consideration.
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4.1.2. Knots as Simple Closed Curves. Returning again to the middle curve in Figure 4.1, we are
confronted with another issue. If we are allowed to “deform” curves, then we can also pull one
end of the curve through the knotted portion and hence untie the knot; see Figure 4.2. This is an
undesirable feature, as we have now deformed a nontrivial knot into a trivial knot, even though
we intuitively view these two knots as being clearly different.

Figure 4.2. Diagrams showing one “untying a knotted curve” by pulling
one end of the curve through the knot.

One very convenient way to prevent this issue is to fuse the two ends of the rope together, that
is, we consider loops rather than curves as ends. Figure 4.3 shows the two knots from Figure 4.1,
recast as loops rather than open-ended curves. Now, no deformation of the loop on the right can
“untie” its knot and leave us with the loop on the left.

Figure 4.3. The diagrams depict the leftmost and middle curves in Figure
4.1, but with both ends of the curves fused together.

The preceding point is only true if the “rope” is not allowed to pass through itself, that is, the
loop must not be self-intersecting. This is captured by the subsequent definition:

Definition 4.1. A simple closed curve is a closed curve that does not intersect itself. (A closed
curve can be defined as one that is generated by a closed parametric curve; see Definition 3.5.)

4.1.3. Knots as Space Curves. There is yet another fundamental point that has thus far been
undiscussed: the dimension n of the ambient space in which the curves are lying.

Suppose first that n = 2, that is, we are dealing with plane curves. Here, we immediately run
into problems due to the small number of dimensions. To be more specific, we cannot wrap a plane
curve around itself (i.e. ”tie it into a knot”) without having the curve intersect itself. In other
words, a simple closed curve in R2 must necessarily be untied. Therefore, we could not possibly
build an interesting theory of knots with plane curves.
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Suppose, on the other hand, that n > 3, and picture any knot that you could tie with a rope
(again, with the ends of the rope fused together). Then, although this is difficult to visualise, what
you could do is to take a nontrivial knot, such as the one in the right diagram in Figure 4.3, and
untie the knot by “deforming it along the extra fourth dimension”. Thus, when n > 3, any simple
closed curve in Rn must also necessarily be untied. From the above arguments, we see that to have
an intuitive and interesting theory of knots, we must consider only space curves.

4.1.4. The Formal Definition. Combining all the intuitions from before, we conclude the following:
we should view knots as simple closed space curves, with the caveat that two such loops that can be
deformed into each other (without self-intersections) are considered the same knot.

It remains only to turn the above into a formal definition for knots. Here, the strategy is the
similar to that for formally defining curves (see Definition 2.6). The first step is to characterise
when one can “deform” one loop into another, so that these loops represent the same knot:

Definition 4.2. Two simple closed curves C1 and C2 in R3 are knot-equivalent iff there exists

(4.1) Φ : [0, 1]× R3 → R3, Φ(s, p) = Φs(p),

with Φ everywhere continuous, such that:
• Each Φs : R3 → R3 is a bijection between R3 and itself.
• Φ0 maps C1 to itself.
• Φ1 maps C1 to C2.

Figure 4.4. An example of a deformation Ψ, in the sense of Definition 4.2.
The curves C1 and C2 in the above illustrations are hence knot-equivalent.

Intuitively, we can view the Φs’s as deformations of the space R3, with Φs deforming space more
and more as s increases. At the beginning, Φ0, we have only C1; however, after deforming and
reaching Φ1, we have transformed C1 to C2. That all the Φs’s are bijections means that the curves
will never pass through themselves throughout this deformation process. For a demonstration of
this, see Figure 4.4, in which this is done with an untied loop.

Finally, it is not difficult to see that knot-equivalence defines an equivalence relation on the set
of all simple closed curves in R3. Thus, we can characterise knots as follows:

Definition 4.3. Consider the following equivalence relation ∼: two simple closed space curves
C1 and C2 satisfy C1 ∼ C2 iff they are knot-equivalent. We then formally define a knot as an
equivalence class of simple closed space curves under the relation ∼.
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Remark. As an analogy, simple closed curves play the same role in the above definition of knots
as parametric curves did in the definition of curves (Definition 2.6):

• Each simple closed curve represents a knot.
• A knot can be represented by many simple closed curves.

Like for curves, it is infeasible, and quite absurd, to always speak of knots as these equivalence
classes. In the next section, we discuss how knots are represented in practice.

4.2. Representation of Knots. Suppose I wished to describe to you a certain knot, which might
possibly be exceptionally complex. What I would need, then, is a efficient and accurate way to
communicate the structure of the knot to you. This leads to the following question:

Question 4.3. How can we represent knots in a way that is accurate, intuitive, and easy to draw?

4.2.1. Knot Diagrams. Recall that in previous chapters, we studied curves through parametric
curves, with the implicit understanding that the objects of interest are the underlying curves
themselves. Indeed, parametric curves could be defined directly and hence were easier to use.

For knots, the idea is similar. For instance, we could study knots through the simple closed
curves (or their parametrisations) that represent them. However, as you have likely experienced
by now, space curves can be difficult to draw, since the drawing surface has only two dimensions.

Fortunately, with regards to knots, it is not so important to capture the third dimension so
thoroughly, since we can deform a curve along the third dimension without altering the knot
structure. We take advantage of this to make the task of drawing knots much easier.

The idea is to “flatten” a simple closed curve onto a 2-dimensional plane, that is, we project a
space curve into a plane curve. Of course, for a nontrivial knot, this would cause the projected loop
to self-intersect. However, because of the freedom to deform curves, at these self-intersections, the
only additional information we require is whether the curve is going over or under itself. These
considerations lead us to the notion of knot diagrams:

Definition 4.4. A knot diagram is a projection (i.e. a “flattening”) of a simple closed space curve
onto R2, along with the following extra information at each self-intersection (called a crossing):

• The portion of the curve that is on top (the overcrossing) is drawn as usual.
• The portion of the curve that is on the bottom (the undercrossing) is drawn with a break.

Figure 4.5. The left picture is a knot diagram for the unknot, while the
right picture is a knot diagram for the trefoil.
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Example 4.1. Consider the left knot diagram in Figure 4.5, depicting a rope that is completely
untied. The knot represented by this diagram is called the unknot, or the trivial knot.

Example 4.2. In contrast, the right diagram in Figure 4.5 is not trivial (though this is also not
trivial to prove). This diagram represents one of the simplest nontrivial knots, called the trefoil.

Remark. Note that since we are free to deform curves, we can always assume in a knot diagram
that every crossing will involve only two curve segments.

For completeness, we extend the notion of knot equivalence to knot diagrams:

Definition 4.5. Two knot diagrams K1 and K2 are said to be knot-equivalent iff they could be
generated from two knot-equivalent simple closed curves.

4.2.2. The Reidemeister Theorem. As we mentioned earlier, if we were to deform a simple closed
curve, then as long as we avoid self-intersections, the knot structure that is represented remains
unchanged. Moreover, as knot diagrams are “flattenings” of these simple closed curves onto a
plane, then similar deformations of knot diagrams will also not change the knot being represented.

What are some simple examples of such knot diagram deformations? Three such instances, often
called Reidemeister moves, are described in Figure 4.6 below:

Figure 4.6. The three Reidemeister moves: (I), (II), and (III), respectively.

To clarify, the depicted curve segments in Figure 4.6 represent parts of a knot diagram. The
dotted lines indicate that what is shown is connected to some other part of the same knot diagram
that is (a) not shown, and also (b) not altered by the deformation.

Definition 4.6. The Reidemeister moves are (somewhat informally) defined as follows:
(I) One either “twists” a segment of the curve to form a “loop” with an extra crossing, or one

removes such a crossing by “untwisting” the loop.
(II) One takes one curve segment that is lying over or under another segment and pulls them

both apart, or one takes two segments and places one over or under the other.
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(III) One takes a curve segment that is lying over or under an “X-shape” formed by two other
segments in the knot diagram, and one moves the first segment “across the X”.

Example 4.3. Figure 4.7 below shows three different knot diagrams being transformed to the
unknot diagram from Example 4.1 through a sequence of Reidemeister moves.

Figure 4.7. Three separate knot diagrams being transformed into the stan-
dard unknot diagram, via a sequence of Reidemeister moves. The parts of
the diagrams where the moves are applied are circled in red.

While the Reidemeister moves should seem simple and intuitive enough, you may be wondering
why mathematicians bothered to name them after anyone. The reason is that in fact, all defor-
mations of knot diagrams can be described using these Reidemeister moves. This amazing fact was
independently discovered in 1927 by Kurt Reidemeister (German mathematician, 1893-1971) and
by James Alexander (American mathematician, 1888-1971) with his student Garland Briggs.

Theorem 4.1. Two knot diagrams are knot-equivalent if and only if one can be transformed into
the other via a finite sequence of Reidemeister moves.

To see this in action, consider again Figure 4.7. Each of the three knot diagrams on the left-hand
side is transformed into the standard unknot diagram of Example 4.1 using Reidemeister moves.
As a result, each of the diagrams on the left-hand side also represents the unknot.
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4.3. Knot Invariants. In the preceding sections, we motivated and then precisely defined what
a mathematical knot is, and we described how these knots can represented as diagrams. However,
this is only the beginning of the story, as our real objective is to study the structures of knots.

Suppose you are given two ropes, each tied into a knot. Then, a basic question would be for
you to see whether these two knots are the same. Since abstract knots are usually graphically
expressed via knot diagrams, the corresponding mathematical question is the following:

Question 4.4. Given two knot diagrams, can we discern whether they represent the same the
knot? If so, then is there an algorithm to efficiently compute the answer?

Although Question 4.4 is a fundamental question of knot theory, it is also one in which mathe-
maticians do not know the answer in general. Even now, a significant amount of research in knot
theory is directed toward answering this question.

Moreover, we need not be nearly as ambitious as in Question 4.4. Even the following unknotting
problem, which seems far simpler in comparison, does not yet have a fully satisfactory answer:

Question 4.5. Given a knot diagram, can we discern whether it represents the unknot? Again, if
so, then is there an algorithm with which we can efficiently compute the answer?

Indeed, while there are algorithms for solving the unknotting problem, it is unknown whether
there is one that can be executed in a tractable amount of time.

The above discussions suggest that it is very difficult—in fact, usually too daunting—to study
Questions 4.4 and 4.5 directly. Instead, mathematicians often approach these problems more
indirectly, by instead studying various properties of knots.

4.3.1. Properties of Knots. We must now clarify what we mean by properties of knots, which are
often called knot invariants. In fact, we can approach this in the same way that we previously
defined geometric properties of curves. At its most basic level, we can formally view knot properties
as functions mapping each knot to a value representing its attribute:

Definition 4.7. A knot invariant is a function mapping each knot to some value.

While Definition 4.7 is simple, it is also not particularly useful, since we rarely work with knots
directly. Rather, since we usually work with knot diagrams in practice, it is more useful to think
first of properties of knot diagrams. More specifically, we first consider a knot diagram property,
i.e. a function mapping any knot diagram to a value denoting its attribute.

Example 4.4. One simple knot diagram property is the following: given a knot diagram D, we
let ncr(D) denote the total number of crossings in D.

In particular, for the three knot diagrams on the left-hand sides of Figure 4.7, their total number
of crossings are, from top to bottom, 3, 4, and 3.

While Example 4.4 defines a perfectly valid property of knot diagrams, we should also ask
whether this is a property of knots. The difference between these two notions is the fact that
many different knot diagrams can represent the same knot. For instance, all the knot diagrams
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in Figure 4.7 represent the same unknot. On the other hand, the numbers of crossings in all the
diagrams in Figure 4.7 vary between 0 and 4, inclusive.

Thus, Example 4.4 would not directly assign a property to knots. For instance, would we assign
the unknot the value 0, 1, 2, 3, or 4? The property ncr of knot diagrams fails to answer this.

Thinking more generally now, to properly define a property of knots, we must avoid the above
ambiguity. Thus, for a knot diagram property to also define a knot invariant, we must also check
that any two knot-equivalent diagrams map to the same value.

Now, checking this is, in general, a dauntingly unrealistic task. Indeed, any knot has infinitely
many possible diagrams that represent it, and we would still have to check the above property
for all such possible diagrams. However, we can further simplify our task by recalling the Reide-
meister theorem, which states that all knot-equivalences can be expressed in terms of three basic
types of deformations. Thus, we need not consider all possible knot-equivalences, only individual
Reidemeister moves that make up the building blocks of knot-equivalences.

In other words, we can characterise a knot invariant as a property of knot diagrams, such that its
value does not change when one deforms a knot diagram via any of the three Reidemeister moves.
We will further expand on this idea when we discuss basic examples.

Now, why would knot invariants be useful tools with regards to studying Question 4.4? To
answer this, suppose we have a property P of knot diagrams that we also know to be a knot
invariant. Suppose also that we have two diagrams D1 and D2 such that P(D1) ̸= P(D2). Then,
we automatically know that D1 and D2 must represent different knots (since otherwise, the knot
invariance property would dictate that P(D1) = P(D2). Consequently, we can use knot invariants
in this way to establish that two diagrams represent different knots.

In the remainder of this section, we describe a few simple knot invariants.

4.3.2. Crossing Number. While Example 4.4 fails to be a knot invariant, we can, after a slight
modification, define a knot invariant based on counting crossings.

Definition 4.8. Given a knot K, we define its crossing number to be the minimum possible value
of ncr(D) for any knot diagram D representing K. In other words, the crossing number of K is the
minimum number of possible crossings that are required in order to draw K as a knot diagram.

Note the difference between Definition 4.8 and Example 4.4. In particular, the crossing number
is indeed a knot invariant (that is, independent of how a knot is represented), since it is obtained
by minimising over all possible knot diagram representations of a knot.

Example 4.5. The crossing numbers of some simple knots are given below:
(1) The unknot has crossing number 0.
(2) The trefoil has crossing number 3.
(3) The figure-8 knot has crossing number 4.

Knot diagrams for each of the above that achieve the crossing number are drawn in Figure 4.8.

While the crossing number is quite simple conceptually as well as fairly informative, it is also
not a particularly useful quantity. For example, to find the crossing number of the trefoil (suppose
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Figure 4.8. Knot diagrams for the unknot (left), trefoil (middle), and
figure-8 knot (right). Each of these diagrams achieves the corresponding
crossing number indicated in Example 4.5.

the answer had not already been spoiled), one would have to consider all possible knot diagrams
representing the trefoil. More specifically, while it is believable that the middle diagram in Figure
4.8 contains the least possible number of crossings for any digrammatic representation of the trefoil,
it is considerably more difficult to prove that this is the case. Again, this would involve considering
all possible cases; for more complicated knots, this task would be far more difficult.

4.3.3. Tricolourability. The next knot invariant that we will study involves studying whether knot
diagrams can be coloured in a particular way. Let us begin from the perspective of knot diagrams.

Figure 4.9. A knot diagram for
the figure-8 knot, with each of its
segments given a different colour.

First, we can view a knot diagram as a collection of
curve segments, with the endpoints of each segment being
an undercrossing in the diagram. Moreover, observe that
at each such crossing, there are three segments involved:

(1) The overcrossing represents one of the segments.
(2) The undercrossing has the remaining two seg-

ments, which are separated by the overcrossing.
This is demonstrated in Figure 4.9, which contains a knot
diagram for the figure-8 with the segments coloured.

Now, one can imagine taking a knot diagram and as-
signing a colour to each of its curve segments. In partic-
ular, let us consider assigning one of three colours—say,
red, green, and blue—to these segments. The following
property of knot diagrams concerns whether one can be
coloured red, green, and blue in a certain manner:

Definition 4.9. A knot diagram D is tricolourable iff it is possible to colour its curve segments in
three different colours (for instance, red, green, and blue) such that the following are satisfied:

(1) All three colours are used somewhere in D.
(2) At each crossing of D, one of the following holds:

• All three segments there have the same colour.
• All three segments there have different colours.
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Possible colourings of a single crossing are demonstrated in Figure 4.10 below:

Figure 4.10. These illustrations demonstrate single crossings within a 3-
coloured knot diagram. In the left crossing, three different colours are used,
while in the right crossing, the same colour (red) is used.

Tricolourability, or lack thereof, is most easily demonstrated via examples:

Example 4.6. The standard unknot diagram (see the left diagram in Figure 4.11) contains only
one curve segment, hence this can only be coloured using a single colour. Thus, this diagram fails
condition (1) of Definition 4.9 and hence fails to be tricolourable.

Figure 4.11. The left diagram shows that only one colour can be used for
the standard unknot diagram, which is not tricolourable. The right diagram
shows a valid 3-colouring for the standard trefoil diagram.

Example 4.7. On the other hand, the usual trefoil knot diagram is tricolourable. One valid
3-colouring can be found in the right diagram in Figure 4.11.

So far, we could only speak about the tricolourability of knot diagrams. However, its usefulness
stems from the fact that it is also a knot invariant, which is shown in the following theorem:

Theorem 4.2. Tricolourability is a knot invariant.

Sketch of proof. Since any two knot-equivalent diagrams are related via a sequence of Reidemeister
moves (by the Reidemeister Theorem), then we need only show that tricolourability, or lack thereof,
is preserved by each of the three types of Reidemeister moves. In other words, for each Reidemeister
move, we show if the knot diagram has a 3-colouring before the move, then there is a way to 3-
colour the new diagram after the move. For this, the main idea is to show that one can recolour
the crossings that have been changed by the Reidemeister move, without changing any colours
elsewhere in the portions of the diagram that remain unchanged.
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To demonstrate this, we show examples of such recolourings in Figure 4.12; in fact, all recolour-
ings through Reidemeister moves are equivalent to one of the cases shown in Figure 4.12. □

Figure 4.12. These illustrations show various cases in the proof of Theo-
rem 4.2. More specifically, these show how applying Reidemeister moves to
a knot diagram does not change whether it is tricolourable.

As a result of Theorem 4.2, it makes sense to talk about knots being tricolourable, and not just
knot diagrams. We can now update our knowledge from Examples 4.6 and 4.7.

Example 4.8. By Examples 4.6 and 4.7:
• The unknot is not tricolourable.
• The trefoil is tricolourable.

Moreover, a careful case-by-case analysis shows that the figure-8 knot is not tricolourable.
In particular, the above observations prove that:

• The unknot and the trefoil are different knots.
• The trefoil and the figure-8 are different knots.

Observe that in order to check whether a knot, such as the trefoil, is tricolourable, we need only
check this for a single diagram that represents it. Indeed, Theorem 4.2 guarantees that the result
will be the same for any other knot-equivalent diagram.

4.3.4. Chirality. Next, we study whether a knot has a certain “mirror symmetry”. As in the case
of tricolourability, we begin by making precise sense of this at the level of knot diagrams.

Definition 4.10. Given a knot diagram D, we define its mirror image to be the knot diagram ob-
tained from D by inverting all of its crossings (that is, each overcrossing becomes an undercrossing,
while each undercrossing becomes an overcrossing).
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Figure 4.13. The usual trefoil diagram (left), and its mirror image (right).

Example 4.9. The trefoil diagram and its mirror image are drawn in Figure 4.13.

The notion of chirality refers to the absence of a mirror image symmetry.

Definition 4.11. A knot diagram D is called chiral iff its mirror image is not knot-equivalent to
D itself. A knot diagram that is not chiral is said to be achiral.

Although chirality is defined in terms of knot diagrams, it is, like tricolourabilty, actually a
property of knots. This is formally established in the subsequent theorem. Therefore, it makes
sense to say that a knot, rather than knot diagram, is chiral or achiral.

Theorem 4.3. Chirality is a knot invariant.

Sketch of proof. By the Reidemeister theorem, it suffices to show that if we apply any of the
Reidemeister moves to a knot diagram, then this transformation does not change whether the
diagram is chiral or not. The main observation behind obtaining this is the following: if two knot
diagrams D1 and D2 are related by a type k Reidemeister move, then their mirror images D ′

1, D ′
2

(respectively) are also related by a type k Reidemeister move.
Suppose now that D1 is achiral, so that D1 is knot-equivalent to D ′

1. Then, for D2 as above
(related to D1 via a Reidemeister move), we have that:

• D2 is knot-equivalent to D1 (via a Reidemeister move).
• D1 is knot-equivalent to D ′

1 (by the assumed achirality).
• D ′

1 is knot-equivalent to D ′
2 (by the previous observation).

As a result, D2 is knot-equivalent to D ′
2, and hence D2 is also achiral.

Furthermore, by symmetry, if D2 is achiral, then so is D1. Consequently, if D1 is chiral, then so
is D2 (since otherwise, D1 must be achiral as well), completing the proof of the theorem. □

As a result of Theorem 4.3, to check whether a knot is chiral, we need only consider the question
for a single knot diagram that represents this knot.

Example 4.10. Observe that the mirror image of the standard unknot diagram (i.e. the left diagram
of Figure 4.3) is itself. Therefore, the unknot is achiral.

Example 4.11. The figure-8 knot is also achiral. Figure 4.14 sketches a sequence of deformations
taking the standard figure-8 knot diagram to its mirror image.
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Figure 4.14. These sketches show how the standard figure-8 knot diagram
can be deformed to its mirror image (proving that the figure-8 is achiral).
The colours show which segments are moved in each step.

Example 4.12. On the other hand, one can prove that the trefoil is chiral. (We defer this proof
for later in this chapter, once we have developed more tools; see Example 4.21.)

In other words, the reverse trefoil (represented by the right diagram in Figure 4.13) has a knot
structure that is distinct from that of the trefoil (the left diagram in Figure 4.13).

4.4. The Jones Polynomial. In the previous section, we discussed various properties of knots—
knot invariants—as ways to study knots themselves. One “holy grail” of this area of investigation
is to discern when two given knot diagrams represent the same knot, that is, to answer Questions
4.4 and 4.5. Knot invariants provided a partial answer to this question, in that two knot diagrams
which possess different values for a knot invariant must represent distinct knots.

With this mind, we can then ask: Is a given knot invariant effective at telling knots apart? In
order for the answer to be positive, a knot invariant should have two desirable properties:

(1) A “good” knot invariant should distinguish among as many different knots as possible.
(2) A “good” knot invariant should be relatively easy to compute.

With these two considerations in mind, let us first see how the knot invariants we have studied
thus far fail to satisfy one of these two criteria.

First, recall that tricolourability maps each knot into only two different values: “yes” (tri-
colourable) or “no” (not tricolourable). As a result, using tricolourability, one can only distinguish
between a knot that is tricolourable (e.g. the trefoil knot) and another that is not (e.g. the unknot).
In particular, it cannot distinguish between two tricolourable knots or two non-tricolourable knots.



80 (MTH5109) LECTURE NOTES

For example, one cannot use tricolourability to distinguish between the unknot and the figure-8
(both fail to be tricolourable), even though they are clearly quite different.

Similarly, chirality maps only into two different values, hence it is also not a particularly effective
tool for discerning knots. For instance, both the unknot and the figure-8 are achiral, hence chirality
again cannot be used to distinguish these as two different knots.

On the other hand, the crossing number does a better job at classifying knots, since it can map
to any non-negative integer (in particular, it does distinguish between the unknot and the figure-
8). However, the serious disadvantage of the crossing number is that it is in general tremendously
difficult to compute. To find the crossing number of a knot K, we have to consider every possible
knot diagram representation of K and count its number of crossings. As this is computationally
intractable, this essentially rules out the crossing number as a practical tool.

The goal of this section, then, is to discuss another knot invariant that fares far better in both
criteria (1) and (2): the Jones polynomial. In contrast to previous invariants, the Jones polynomial
maps each knot to a polynomial, rather than a number or a yes/no answer. As a result, it can
take many more distinct values and can hence tell many more knots apart. Furthermore, as we
will see, the Jones polynomial can be computed via a recursive process. Although this is usually
quite time-consuming, this does provide an effective algorithm that allows a person or a computer
to find the Jones polynomial of any given knot diagram.

However, before we can define the Jones polynomial itself, we must first complete several pre-
liminary steps. In particular, we must first discuss some quantities that fail to be knot invariants.

4.4.1. Writhe. The first “not-invariant” (pun intended, with apologies) we discuss is the writhe,
which roughly measures how much the arcs in a knot diagram are “coiled around each other”.

Definition 4.12. Given a knot diagram D, we define its writhe W(D) as follows:
(1) First, we assign an orientation to D, that is, we choose a direction of travel along the closed

curve representing the diagram (i.e. an orientation of this curve).
(2) For each crossing of D, we associate with it a signature, or sign, using the following rule:

(4.2) sgn
( )

= +1, sgn
( )

= −1.

More specifically, we rotate the oriented diagram so that the two portions of curve in the
crossing are heading from the bottom-left to the top-right and from the bottom-right to the
top-left. This crossing has positive signature if the bottom-left to top-right branch is on top,
and negative signature if the bottom-right to top-left branch is on top.

(3) Finally, the writhe of D is simply the sum of all the signatures of its crossings:

(4.3) W(D) =
∑

crossings P in D
sgn(P).

While the formal definition may seem complicated, it is demonstrated more easily via example:

Example 4.13. Let us compute the writhe of the standard trefoil knot diagram T , drawn on the
left illustration in Figure 4.15. The first step is to set an orientation for T ; our chosen direction
of travel is indicated by the purple arrows in the middle diagram of Figure 4.15.
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Now, for each crossing of this oriented diagram, we compute its signature according to the rule
given in (4.2). By rotating the diagram as needed, we see that all three crossings have signature
+1; see the right diagram of Figure 4.15. Finally, by (4.3), the writhe of T is hence given by

W(T) = +1+ 1+ 1 = +3.

Figure 4.15. The left drawing is the standard trefoil knot diagram T from
Example 4.13. In the middle drawing, we have assigned an orientation to T ,
which is indicated by the purple arrows. In the right drawing, the signature
of each crossing has been added to the oriented diagram.

One point to note is that even though we had to choose an orientation of a given knot diagram
in order to compute its writhe, the value of the writhe that we ultimately compute is actually
independent of our choice of orientation. To see this, we observe that if we were to switch to the
opposite orientation, then at each crossing, both branches would have their directions reversed. In
particular, this would not change how the crossing looks with respect to (4.2) (although we would,
however, have to turn the diagram upside-down to see this).

For completeness, we now provide two more basic examples:

Example 4.14. Next, consider the standard unknot diagram D from the left drawing of Figure
4.5, to which we can assign an orientation. Since D contains no crossings, we have that

W(D) = 0.

Figure 4.16. The left diagram contains the figure-8 knot diagram D from
Example 4.15, along with a chosen orientation (in purple). The signature of
each crossing of D is indicated in the right diagram.
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Example 4.15. Consider the standard figure-8 knot diagram D from the rightmost drawing of
Figure 4.8. An orientation is indicated in the left drawing of Figure 4.16, while the signature of
each crossing in the oriented diagram is indicated in the right drawing. Consequently, the writhe is

W(D) = −1− 1+ 1+ 1 = 0.

Previously, we had already mentioned that the writhe fails to be a knot invariant; we now
study this in further detail. Recall from the Reidemeister theorem (Theorem 4.1) that any knot
equivalence can be decomposed into a finite sequence of Reidemeister moves. As a result, it suffices
to study how the writhe is impacted by each Reidemeister move.

Let us begin with type I Reidemeister moves. To describe these generally, let us first add one
bit of notation for convenience. In our knot diagrams, we will use a rectangular box to represent
a part of the diagram that remains unchanged over the operations depicted.

To be more specific, type I moves can be abstractly described using these “black boxes” by

(4.4) ↔ , ↔ .

(For future reference, we also chose an orientation for each of the diagrams in (4.4).) The rect-
angular boxes in (4.4) could represent something very simple, e.g. one curve segment without any
crossings, or something excessively complicated, consisting of millions of arcs and crossings. How-
ever, what is assumed in drawings such as (4.4) is that whatever is in the “black box” remains
unchanged between the left-hand and right-hand sides of the “↔”.

Returning to the writhe, we see that in the first transformation of (4.4), the left-hand side has
one additional crossing compared to the right-hand side. Moreover, using the given orientation in
(4.4), we see that this crossing has signature +1. As a result, we conclude that the first operation
of (4.4) (from left to right) has the effect of decreasing the writhe by 1.

A similar analysis of the second operation in (4.4) shows that the extra crossing on the left-hand
side now has signature −1. Consequently, this operation (again from left to right) has the effect of
increasing the writhe by 1. These results are summarised in Figure 4.17 below.

W

( )
=W

 + 1,

W

( )
=W

 − 1.

Figure 4.17. The equations above demonstrate how the writhe of a knot
diagram is impacted by type I Reidemeister moves.

Next, let us consider type II Reidemeister moves. This can be approached in the same manner
as we did for type I moves. First, we observe that by using the “black box” notation again, we can
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describe one case of such type II moves graphically as

↔ .

Note that aside from the “black box”, the left-hand side has two additional crossings not present
in the right-hand side. Moreover, the extra top and bottom crossings have signatures +1 and −1,
respectively. As a result, we conclude from Definition 4.12 that

(4.5) W


 =W


 .

The above, however, does not quite complete the analysis of type II moves. Indeed, depending
on what happens inside the “black box”, it may happen that one of the two arcs protruding from
the black box is forced to have the opposite orientation, that is,

↔ .

Although this is in principle a different case than before, it can still be handled in exactly the same
manner. In particular, on the left-hand side of the above, the extra top and bottom crossings now
have signatures −1 and +1, respectively, hence we again conclude that

(4.6) W


 =W


 .

In other words, in every case, applying a type II Reidemeister move does not alter the writhe.
It remains only to consider type III Reidemeister moves. This is once again handled in the same

manner as before, except there are now many more cases to consider. (In particular, since this
deals with alterations to three branches of the diagram, there are more distinct cases of orientation
configurations than in the preceding type II setting.) To keep the discussion reasonably brief, let
us consider only one of the several cases of a type III move below, in equation (4.7):

(4.7) W


 =W


 .

By checking the signatures of all crossings on both sides, we see that (4.7) indeed holds. In fact,
similar computations would also show that no type III move alters the writhe.

Finally, combining our observations from Figure 4.17 and (4.5)–(4.7), we conclude:
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Theorem 4.4. The writhe of a knot diagram is not altered when a type II or type III Reidemeister
move is applied to the diagram. On the other hand, type I Reidemeister moves alter the writhes of
knot diagrams in the manners indicated in Figure 4.17.

4.4.2. Links. Before we can define the second preliminary quantity needed in order to define the
Jones polynomial, we must first briefly expand our viewpoint beyond knots to objects called links.
Recall that a knot models a piece of rope (with its ends glued to each other) that can be tied
around itself in various ways. Links, on the other hand, represent one or more pieces of rope which
can be tied around itself as well as around each other.

Before giving the formal definitions, we first provide some simple examples:
• The simplest instance of a link that is not a knot is the (two-component) unlink, given by

two unknots that are separate from each other. See the first drawing in Figure 4.18.
• Just having two copies of the unknot is not particularly interesting. A more substantial

example is given in the second drawing of Figure 4.18 and is known as the Hopf link. This
again consists of two unknots, but they are now tied around each other.

• A more elaborate example, again crafted from unknots and resembling an Olympic rings
logo gone horribly wrong, is given in the last drawing of Figure 4.18.

Figure 4.18. The drawings represent some simple examples of links. The
link on the left contains two separated unknots. The middle diagram is the
Hopf link, comprising of two unknots linked to each other. The link in the
last diagram is crafted by tying five unknots together.

Regarding the formal definitions of links and their associated objects, this discussion proceeds
in a manner analogous to knots. For completeness, we sketch the process below.

First, whereas knots are represented by a simple closed curve, links must be represented by a
finite collection of disjoint simple closed curves. Like for knots, two such collections of curves are
link-equivalent whenever one collection can be “continuously deformed” into the other.

Definition 4.13. Let L1 and L2 be two collections of m disjoint simple closed space curves:

L1 = (L1,1, L1,2, . . . , L1,m), L2 = (L2,1, L2,2, . . . , L2,m).

We say that L1 and L2 are link-equivalent iff there exists a continuous

Φ : [0, 1]× R3 → R3, Φ(s, p) = Φs(p),

such that:
• Each Φs : R3 → R3 is a bijection between R3 and itself.
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• Φ0 maps each L1,i, where 1 ≤ i ≤ m, to itself.
• Φ1 maps each L1,i to L2,i, where 1 ≤ i ≤ m.

Here, the map Φ in Definition 4.13 plays the same role as the Φ in Definition 4.2. With this
notion of link equivalence in hand, we can now formally define links:

Definition 4.14. Consider the following equivalence relation ∼: two collections L1 and L2 of
disjoint simple closed space curves satisfy L1 ∼ L2 iff they are link-equivalent. Then, we define a
link as an equivalence class of collections of curves under the above relation ∼.

The next step is to construct an efficient method for graphically representing links. This leads
us to the notion of link diagrams, which are direct analogues of knot diagrams:

Definition 4.15. A link diagram is a projection of a collection of disjoint simple closed space
curve onto R2, along with the following extra information at each crossing:

• The curve segment that is on top (the overcrossing) is drawn as usual.
• The curve segment that is on the bottom (the undercrossing) is drawn with a break.

Moreover, two link diagrams D1 and D2 are said to be link-equivalent iff they could be generated
from two link-equivalent collections of simple closed curves.

Example 4.16. In particular, the drawings in Figure 4.18 are link diagrams, in the sense of
Definition 4.15. Moreover, none of the three diagrams are link-equivalent.

Given a link diagram, we can once again deform it without changing the underlying link struc-
ture. As was the case for knots, we can once again decompose such deformations into their most
basic components. In fact, these are once again the Reidemeister moves described in Definition
4.6 and demonstrated in Figure 4.6. The only difference is that in the setting of links, these
transformations can also happen at crossings made from two different curves of the diagram.

Perhaps unsurprisingly, a direct analogue of the Reidemeister theorem holds for links:

Theorem 4.5. Two link diagrams are link-equivalent if and only if one can be transformed into
the other via a finite sequence of Reidemeister moves.

4.4.3. The Kauffman Bracket. We now discuss the second property of knot diagrams needed in
order to define the Jones polynomial: the Kauffman bracket. In contrast to the quantities we have
studied so far, the Kauffman bracket takes polynomials as its values. While this may seem strange
at first, its practical effect is that we now have a much larger variety of values of assign to knot
digrams. This will ultimately give us far more flexibility for distinguishing different knots.

We now give the formal definition of the Kauffman bracket. This is recursive by nature, in that
the Kauffman bracket of a diagram is defined in terms of Kauffman brackets of simpler diagrams.
One annoying but important point is that this recursive definition forces us to define Kauffman
brackets for all link diagrams (see Definition 4.15), and not just knot diagrams. This is the reason
for our excursion into links in the preceding discussions.

Definition 4.16. We let B(D, x) denote the Kauffman bracket of a link diagram D, with x and
x−1 being the variables in the resulting polynomial. B is then defined via the following rules:
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(1) Unknot: For the standard unknot diagram, we define

(4.8) B
(

, x
)
= 1.

(2) Separation: Given an arbitrary link diagram , we have

(4.9) B
(

, x
)
= −(x2 + x−2) · B

(
, x
)

,

where again denotes the standard unknot diagram.
(3) Disentangling: The following rule holds:

(4.10) B

(
, x

)
= x · B

(
, x

)
+ x−1 · B

(
, x

)
.

In (4.10), the box denotes a portion of a link diagram (the same in all three pictures), with
the remaining curve segments being arcs that are connected to arcs within the box.

Several clarifications regarding Definition 4.16 are in order. As mentioned before, the main idea
is define the Kauffman bracket of a diagram in terms of simpler diagrams, with less crossings
or components. Rule (1) provides the starting point of this recursion—for the simplest possible
unknot diagram, we just define its Kauffman bracket to be the constant 1.

The role of rule (2) is to reduce the number of components in a link diagram. More specifically,
given a link diagram along with an unknot diagram that is completely separated from ,
we can remove the from the Kauffman bracket, at the cost of an extra factor of −(x2 + x−2).
In particular, this reduces the number of components in the diagram by 1.

We still need a way to reduce the number of crossings in a diagram. This is accomplished through
rule (3). The left-hand side of (4.10) contains the Kauffman bracket of a nontrivial diagram, with
a single crossing highlighted. The right-hand side of (4.10) expresses this in terms of brackets
of two other diagrams that have precisely this highlighted crossing removed. In particular, both
diagrams here have one less crossing than the diagram in the left-hand side.

Figure 4.19. Link diagrams with coloured marks, demonstrating how a
crossing is “cut” when applying the disentangling rule (3) in Definition 4.16.

Let us now look more closely more closely at how a crossing is removed in rule (3). We begin
with the diagram on the left-hand side of (4.10). To aid in the explanation, let us colour the four
ends of the crossing as in the left drawing in Figure 4.19:
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• First, we align the overcrossing so that it goes toward the top-left and bottom-right corners.
The top-left end is then coloured red, while the bottom-right end is coloured blue.

• Similarly, we align the undercrossing to go in the top-right and bottom-left directions. The
top-right end is coloured green, while the bottom-right end is coloured purple.

To obtain the two diagrams on the right-hand side of (4.10), the idea is to imagine taking a pair
of scissors, “cutting” the two arcs at the crossing, and then gluing the severed strings together:

• For the first diagram in the right-hand side of (4.10), we glue the red end to the purple end
and the green end to the blue end. This is shown in the middle diagram in Figure 4.19.

• For the second diagram in the right-hand side of (4.10), we glue the red end to the green
end and the blue end to the purple end. This is shown in the right diagram in Figure 4.19.

The next task is to derive formulas detailing how the Kauffman bracket is changed when a
Reidemeister move is applied. These formulas will simplify a number of computations later on,
and they will be essential in the definition of the upcoming Jones polynomial. These computations
will also serve as basic examples for demonstrating how Kauffman brackets are computed.

Figure 4.20. Two abstract link diagrams, each with a “loop”.

Let us begin with type I moves. First, consider the left link diagram in Figure 4.20. As before,
the denotes a portion of the diagram that will remain unchanged. Note the one curve segment
attached to , with a “twist” that crosses itself. The specific problem, then, is to understand how
the Kauffman bracket is affected by undoing this twist.

The first step is to apply rule (3) to this crossing. Note that the overcrossing is already aligned
toward the upper-left and lower-right corners, so we can simply colour the four ends as in Figure
4.19. Applying (4.10) with the colouring scheme from Figure 4.19 yields

B

(
, x

)
= x · B

(
, x
)
+ x−1 · B

(
, x
)

.

The first diagram on the right-hand side contains a separated unknot, which we can then eliminate
using rule (2). Indeed, applying (4.9) along with some algebra results in the following:

B

(
, x

)
= −x(x2 + x−2) · B

(
, x
)
+ x−1 · B

(
, x
)

(4.11)

= (−x− x−1) · B
(

, x
)
+ x−1 · B

(
, x
)

= −x3 · B
(

, x
)

.
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Similarly, consider the diagram on the right in Figure 4.20, which is similar but has with the
opposite “twisting”. Again, we apply rule (3) and then (2) to eliminate the loop:

B

(
, x

)
= x · B

(
, x
)
+ x−1 · B

(
, x
)

(4.12)

= x · B
(

, x
)
− x−1(x2 + x−2) · B

(
, x
)

= −x−3 · B
(

, x
)

.

The only caveat is that in order to colour the four ends and apply rule (3), we have to first rotate
the diagram 90 degrees, so that the overcrossing is aligned toward the top-left and bottom-right
corners. As a result of this, the four ends in (4.12) are now coloured differently than in (4.11).

We now consider the setting of type II moves. One case of this is given below:

B

 , x

 = x · B

(
, x

)
+ x−1 · B

 , x

(4.13)

= −x−3 · x · B

(
, x

)
+ x−1 · x · B

 , x


+ x−1 · x−1 · B

(
, x

)

= B

 , x

 .

A more detailed explanation of the above steps is listed below:
• In the first equality, we applied rule (3) to the top crossing. For convenience, we added the

same colouring scheme that was detailed in Figure 4.19.
• In the second equality, we applied the above formula (4.12) for type I Reidemeister moves

to the first term to the area circled in beige. (Note that by rotating the diagram, we have
the situation in (4.12), and not (4.11).) We also applied rule (3) to the last term; here, we
adopted a different colouring scheme in order to distinguish from the previous step.

• For the last equality, we noticed that the first and last terms cancel.
In particular, observe that the diagrams in the left-hand and right-hand sides of (4.13) indeed

differ by a type II Reidemeister move. The computations in (4.13) then show that this type II
move does not change the value of the Kauffman bracket. Similar calculations can be applied to
other examples of type II moves, with the same results; for brevity, we will not show these here.
Thus, we conclude that all type II moves leave the Kauffman bracket unchanged.

In fact, the same conclusion holds for type III Reidemeister moves as well, as one can similarly
compute that type III moves do not alter the Kauffman bracket. While it is rather painstaking to
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handle all the cases, one example is given in the subsequent computation:

B

(
, x

)
− B

(
, x

)
=

[
x · B

(
, x

)
+ x−1 · B

(
, x

)]
(4.14)

−

[
x · B

(
, x

)
+ x−1 · B

(
, x

)]

= x · B

(
, x

)
− x · B

(
, x

)
= 0.

• In the first step, rule (3) is applied to each of the circled crossings on the left-hand side.
• In the second step, we handle the first and third terms by recalling that type II moves do

not change the Kauffman bracket (for clarity, the affected areas are circled in yellow), and
we note that the second and fourth terms cancel.

Again, other cases of type III moves are treated analogously, with the same result.
The above developments can now be summarised in the following theorem:

Theorem 4.6. The Kauffman bracket of a link diagram is not altered when a type II or type III
Reidemeister move is applied to the diagram. On the other hand, type I Reidemeister moves alter
the Kauffman brackets of link diagrams in the following manners:

B

(
, x

)
= −x3 · B

(
, x
)

,(4.15)

B

(
, x

)
= −x−3 · B

(
, x
)

.

One confusing aspect of applying (4.15) is determining whether one obtains −x+3 or −x−3. This
depends on how the given loop is oriented, and can be systematised via the following rules:

• The factor is −x+3 whenever one traverses anticlockwise along the loop from the overcross-
ing to the undercrossing. This is the case for the first formula in (4.15).

• On the other hand, the factor is −x−3 whenever one traverses clockwise along the loop from
the overcrossing to the undercrossing. This is the case for the second formula in (4.15).

Finally, we compute the Kauffman bracket for two simple, concrete link diagrams:

Example 4.17. First, we find the Kauffman bracket of the Hopf link, i.e. the middle diagram in
Figure 4.18. For this, we apply rule (3), followed by the formulas (4.15) for type I moves:

B

 , x

 = x · B

(
, x

)
+ x−1 · B

(
, x

)

= (−x3) · x · B
(

, x
)
+ (−x−3) · x−1 · B

(
, x
)

= −x4 − x−4.
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In the first step, where rule (3) is applied, we coloured the four ends of the top crossing in the
same manner as in Figure 4.19. In the second step, we applied both formulas in (4.15) to the
loops circled in orange. Note that in the first term, the first loop moves anticlockwise from the
overcrossing to the undercrossing, resulting in a factor of −x3. On the other hand, the loop in
the second term goes clockwise from the overcrossing to the undercrossing, resulting in a factor of
−x−3. Finally, note that in the last step, we applied rule (1).

Example 4.18. Next, we consider the standard trefoil diagram (that is, the second diagram in
Figure 4.5). Applying rule (3) (again, the colourings are included for convenience), we obtain

B

 , x

 = x · B

(
, x

)
+ x−1 · B

(
, x

)
.

The first term on the right-hand side can be treated by applying (4.15) twice:

x · B

 , x

 = −x4 · B

(
, x

)
= x7 · B

(
, x
)
= x7.

The remaining term is the Hopf link, and we simply recall the result from Example 4.17:

x−1 · B

(
, x

)
= x−1(−x4 − x−4) = −x3 − x−5.

Finally, combining all of the above yields

B

 , x

 = x7 − x3 − x−5.

4.4.4. The Jones Polynomial. We are now ready to define the Jones polynomial using the writhe
and the Kauffman bracket. Note, however, that although the Jones polynomial is intended to be a
knot invariant, both the writhe and the Kauffman bracket lack this property. Thus, we must first
ask how a knot invariant could be generated out of these two non-invariant quantities.

The key observation is that both the writhe and the Kauffman bracket fail to be knot invariants
in very specific ways. In particular, recall from Theorems 4.4 and 4.6 that:

• Both the writhe and the Kauffman bracket are invariant under type II and III moves.
• Neither the writhe nor the Kauffman bracket are invariant under type I moves.

The idea, then, is to combine the writhe and the Kauffman bracket in a way such that the change
in the writhe via a type I move (see Figure 4.17) is exactly offset by the corresponding change in
the Kauffman bracket (see (4.15)). With this in mind, we now define the following:

Definition 4.17. Given a knot diagram D, we define its Jones polynomial to be

(4.16) J(D, t) =
(
−t

1
4

)3·W(D)

B
(
D, t

1
4

)
.

In particular, since type I moves increase or decrease the writhe by 1, then in the right-hand side
of (4.16), such a change in the writhe yields an extra factor of (−t1/4)±3. This precisely matches
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the change in B(D, t1/4) by the same type I move, hence the formula for J(D, t) should remain
unchanged overall. We show this rigorously in the following theorem:

Theorem 4.7. The Jones polynomial is a knot invariant.

Proof. By the Reidemeister theorem (Theorem 4.1), we need only show that (4.16) does not change
under any Reidemeister move. Moreover, since both the writhe and Kauffman bracket remain
unchanged by type II and type III moves (by Theorems 4.4 and 4.6), the same also holds for
(4.16). Thus, it remains only to show that (4.16) does not change under type I moves.

For this, we proceed abstractly and compute how J changes under the transformations

⇔ , ⇔ .

Applying the formulas in Figure 4.17 and (4.15), we see that

J

(
, t

)
=
(
−t

1
4

)3·W 
B

(
, t

1
4

)

=
(
−t

1
4

)3·[W( )
−1

]
·
(
−t

1
4

)3
B
(

, t
1
4

)
=
(
−t

1
4

)3·W( ) (
−t

1
4

)−3
·
(
−t

1
4

)3
B
(

, t
1
4

)
=
(
−t

1
4

)3·W( )
B
(

, t
1
4

)
= J

(
, t
)

.

Similarly, for the opposite twisting, we have

J

(
, t

)
=
(
−t

1
4

)3·W 
B

(
, t

1
4

)

=
(
−t

1
4

)3·[W( )
+1

]
·
(
−t

1
4

)−3
B
(

, t
1
4

)
=
(
−t

1
4

)3·W( )
B
(

, t
1
4

)
= J

(
, t
)

.

Thus, (4.16) is indeed preserved by type I Reidemeister moves. □

Thanks to Theorem 4.7, we can now make unambiguous sense of the Jones polynomial of any
knot, and not just of any knot diagram. This can be done in the obvious way:

Definition 4.18. Given any knot K, we define its Jones polynomial J(K, t) to simply be J(D, t),
where D denotes any knot diagram that represents K.
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Yet another aspect of the formula (4.16) that deserves explanation is the presence of the symbol
t1/4. This is, in fact, purely aesthetic. In practice, when one computes the Jones polynomial of
knots, with x in the place of t1/4, then one generally obtains powers of x that are multiples of 4.
Thus, replacing x by t1/4 has the effect of doing away with these extra 4’s, leaving us with smaller
but still integer exponents. We will see this in action in the examples below.

Example 4.19. Let us first consider the unknot, which can be represented by the left diagram in
Figure 4.5. Using this particular diagram, we first note that its writhe is

W
( )

= 0,

since it has no crossings. Furthermore, by rule (1) of Definition 4.16,

B
(

, x
)
= 1.

As a result, by Definition 4.17, we conclude that

J
(

, t
)
=
(
−t

1
4

)3·W( )
· B
(

, x
)
=
(
−t

1
4

)0
· 1 = 1.

Example 4.20. For a nontrivial example, we consider the trefoil knot, which can be represented
by the right diagram in Figure 4.5. Using this diagram, we recall from Example 4.13 that

W

  = 3,

and from Example 4.18 that

B

 , x

 = x7 − x3 − x−5.

Thus, by Definition 4.17, we have

J

 , t

 =
(
−t

1
4

)3·3 [(
t

1
4

)7
−
(
t

1
4

)3
−
(
t

1
4

)−5]

=

[
−
(
t

1
4

)16
+
(
t

1
4

)12
+
(
t

1
4

)4]
= −t4 + t3 + t.

In particular, the process of computing the Jones polynomial is a matter of combining the
computations we have done before. As shown in Examples 4.19 and 4.20, one computes the writhe
and the Kauffman bracket as before and then combines them using the formula in (4.16).

Finally, for a bit of historical perspective, the Jones polynomial was discovered in 1984 (with the
results published in 1986) by Vaughan Jones (New Zealand and American mathematician, born
1952). This was the first new polynomial-valued knot invariant discovered in over sixty years,
since the Alexander polynomial in 1923. For his work, Jones was awarded the Fields Medal—often
nicknamed the “Nobel prize of mathematics”—in 1990.
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4.4.5. Some Loose Ends. In this subsection, we conclude our brief introduction of knot theory by
tying up some final loose ends (last knot pun, I promise).

The first piece of unfinished business goes back to our discussion on chirality. In Example 4.12,
we claimed that the trefoil is chiral but avoided giving a proof. This was due to the difficulty
in directly showing that the trefoil and reverse trefoil (see Figure 4.13) represent distinct knots.
Below, we use the Jones polynomial to give a very simple proof of this fact.

The key observation is the following property of the Jones polynomial:

Proposition 4.8. Let K be a knot, and let K̃ be its mirror image. Then,

(4.17) J(K̃, t) = J(K, t−1).

Proof sketch. We claim that the following two identities hold:

W(K̃) = −W(K),(4.18)

B(K̃, x) = B(K, x−1).(4.19)

Assuming (4.18) and (4.19) for the moment, we conclude that

J(K̃, t) =
(
−t

1
4

)3·W(K̃)

B
(
K̃, t

1
4

)
=
(
−t

1
4

)−3·W(K)

B

(
K,
(
t

1
4

)−1)
=
[
−(t−1)

1
4

]3·W(K)

B
(
K, (t−1)

1
4

)
= J(K, t−1),

which completes the proof of (4.17). Thus, it remains only to show (4.18) and (4.19).
First, for (4.18), the main point is to recall that the mirror image K̃ is obtained by taking each

crossing of K and interchanging the overcrossing and undercrossing (see Definition 4.10). This has
the effect of negating the signature of each crossing (e.g. if a crossing of K has signature −1, then
the corresponding crossing of K̃ has signature +1). Since the writhe is defined to be the sum of
the signatures of all crossings, then the identity (4.18) follows.

Next, for (4.19), the main observations are that:
• Rules (1) and (2) in Definition 4.16 are unaffected when x is replaced by x−1:

(4.20) B
(

, x−1
)
= 1, B

(
, x−1

)
= −(x2 + x−2) · B

(
, x−1

)
.

• For rule (3), if the crossing in the left-hand side of (4.10) is reversed, then the two brackets
on the right-hand side of (4.10) are interchanged:

B
(

, x
)
= x−1 · B

(
, x

)
+ x · B

(
, x

)
,(4.21)

B
(

, x−1
)
= x · B

(
, x−1

)
+ x−1 · B

(
, x−1

)
.
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A formal proof of (4.19) now relies on a combination of (4.20), (4.21), and an induction argument
based on the recursive structure of Definition 4.16. However, to keep the discussion in these notes
relatively simple and brief, we skip the technical details here. □

Proposition 4.8 can then be connected to chirality as follows:

Corollary 4.9. Let K is a knot. If

(4.22) J(K, t) ̸= J(K, t−1),

then K must be chiral.

Proof. Assume (4.22) holds, and suppose, for an eventual contradiction, that K is achiral, that is,
K and its mirror image K̃ are the same knot. Since the Jones polynomial is a knot-invariant by
Theorem 4.7, the mirror property of Proposition 4.8 implies that

J(K, t) = J(K̃, t) = J(K, t−1),

which contradicts our assumption (4.22). As a result, K is chiral. □

Example 4.21. Let us return to the trefoil. Recall from Example 4.20 that

J

 , t

 = −t4 + t3 + t.

Moreover, substituting in t−1 in the place of t yields

J

 , t−1

 = −t−4 + t−3 + t−1.

In particular, the above formulas show that

J

 , t−1

 ̸= J

 , t

 ,

thus Corollary 4.9 implies that the trefoil is chiral.

Remark. While Corollary 4.9 provides an effective test for whether a knot is chiral, it cannot be
similarly used to test whether a knot is achiral. In particular, it is possible that a knot K satisfies
the identity J(K, t) = J(K, t−1), but K is nonetheless chiral.

Finally, let us return to our original problem (see Question 4.4) of whether two knot diagrams
represent the same knot. The Jones polynomial, as a knot invariant, provides a partial answer to
this question in the usual way: if two knots K1 and K2 satisfy J(K1, t) ̸= J(K2, t), then K1 and K2
must be different knots. The main contrast with our previous knot invariants—crossing number,
tricolourability, chirality—is that the Jones polynomial takes far more possible values and hence
does a better job of distinguishing knots, while still remaining (somewhat) computable.

However, the above is still a bit vague, and one can demand more specific answers—for instance,
just how good is the Jones polynomial at distinguishing knots? One way to begin exploring this
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question is to just compute the Jones polynomial for all the simplest knots. With enough time
and patience, one can obtain the following through brute force calculations:

(1) The Jones polynomial completely distinguishes between all knots with crossing number
strictly less than 10. In other words, if K1 and K2 are two distinct knots with crossing
numbers strictly less than 10, then J(K1, t) ̸= J(K2, t).

(2) On the other hand, the Jones polynomial fails to completely distinguish between all knots
with crossing number at most 10. In other words, there do exist two distinct knots K ′

1 and
K ′
2, with crossing number at most 10, such that J(K ′

1, t) = J(K2, t
′).

As a result, for the simplest knots—at least, those with less than 10 crossings—the Jones polyno-
mial will definitively answer Question 4.4. However, for more complicated knots—with at least 10
crossings—the Jones polynomials will only give imperfect “educated guesses” to Question 4.4.

One can also do a similar accounting for the simpler Question 4.5: can we determine whether
a given knot is the unknot? In particular, one can again ask if the Jones polynomial provides a
definitive answer to this question. To be more specific, we ask the following:

Question 4.6. If K is a knot, and J(K, t) = 1, then must K be the unknot? In other words, is the
unknot the only knot with Jones polynomial equal to 1?

Interestingly, the answer to Question 4.6 is not known. Thus far, researchers have computed the
Jones polynomial for a wide variety of knots, simple and complex, and have not found any nontrivial
knot with Jones polynomial 1. However, there could potentially be an even more complicated knot
K out there with J(K, t) = 1. To this point, no one knows whether this is true or not.

In closing, the material discussed in this chapter is only a brief introduction to knot theory,
which today is a vibrant area of mathematical research. Since the Jones polynomial in the 1980s,
researchers have uncovered even more general invariants in order to better study knots and links.
Examples that are actively used in recent research include the HOMFLY polynomial and the
Khovanov homology. If you are interested in studying mathematical knots in further detail, there
is certainly much more fascinating material to pursue! One place to start is the textbook [3].
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5. Surfaces and Parametrisations

In the latter portion of this course, we move on from one-dimensional curves and turn our
attention toward 2-dimensional surfaces. Like for curves, you probably have several intuitive ideas
regarding what the notion of a surface should be. In this chapter, we discuss these in greater
detail, and we explore how we can achieve a precise mathematical definition of surfaces. We also
connect the geometry of surfaces to ideas in calculus and linear algebra.

5.1. Parametric Surfaces. Before dealing with formal definitions, let us first list some real world
contexts in which you have encountered the word “surface”:

• Surface of a table.
• Surface of the earth.
• Surface of the water.

You have likely also seen texts refer to the following mathematical objects as “surfaces”:

Example 5.1. Consider the following subsets of R3:
(1) The yz-plane, given by the equation x = 0.
(2) The unit sphere, given by the equation x2 + y2 + z2 = 1.
(3) The paraboloid, given by the equation z = x2 + y2.

Plots of these sets can be found in Figure 5.1.

Figure 5.1. The surfaces (1), (2), (3), respectively, from Example 5.1.

What do these objects have in common? Your intuitions probably already indicate that each of
the three sets in Example 5.1, with its corresponding diagram in Figure 5.1, is “2-dimensional” in
nature. You also probably feel the same about the real world examples further above.

Thus, we can think of this dimensional property (which we have yet to define) as the common
attribute linking all the above objects. Just as we intuitively characterised curves as 1-dimensional
geometric objects, we can similarly characterise surfaces as 2-dimensional geometric objects. Of
course, this immediately leads to the obvious question:

Question 5.1. What exactly do we mean by “2-dimensional geometric objects”?

Below, we explore this question in detail, beginning with the notion of parametric surfaces. We
conclude this discussion in the next section with a formal definition of surfaces.
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5.1.1. Surface Parametrisations. Let us begin by considering a function f : R2 → R of two vari-
ables. To graph f, the usual convention is to represent it as the equation

z = f(x, y),

that is, the xy-plane represents the domain of f, and the z-coordinate captures the value of f.

Example 5.2. For example, the paraboloid in part (3) of Example 5.1 is such a graph, with

f(x, y) = x2 + y2.

To be even more explicit, we can describe all the points on the graph of f as

G(f) = {(x, y, f(x, y)) | x, y ∈ R}.

Here, x and y both vary freely over all real values, while each pair (x, y) ∈ R2 is associated with
the z-value f(x, y). Note that G(f) can also be represented as the image of the function

(5.1) σ : R2 → R3, σ(u, v) = (u, v, f(u, v)).

Intuitively, one would view the graph of f as a “surface”, i.e. a 2-dimensional object. From the
representation σ, we begin to see why. Indeed, the 2-dimensional nature of σ is captured by its
dependence on two variables, u and v. If we vary the parameters u and v over all the real numbers,
then σ(u, v) will trace out precisely all the points on the graph of f. In other words, σ shows that
the graph of f is parametrised by two real variables.

Example 5.3. The following are examples of graphs represented in the form (5.1):

σ1 : R2 → R3, σ1(u, v) = (u, v, u− v),

σ2 : R2 → R3, σ2(u, v) = (u, v, u2 − v2).

Plots for σ1 and σ2 are drawn below in Figure 5.2.
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Figure 5.2. Plots for σ1 (left) and σ2 (right) in Example 5.3.

Now, suppose we switch the roles of the x, y, and z coordinates, and define

σy : R2 → R3, σy(u, v) = (u, f(u, v), v),
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σx : R2 → R3, σx(u, v) = (f(u, v), u, v).

Neither σy nor σx needs be the graph of a function in the conventional sense (with the z-coordinate
capturing the value of f). However, looking at Examples of such σy and σx below in Figure 5.4,
your intuition would likely still indicate that they are “surfaces”. Like for (5.1), the images of σy
and σy are still parametrised by two variables, hence they retain their 2-dimensional nature.

Example 5.4. Consider the following functions:

σy : R2 → R3, σy(u, v) = (u, u2 + v2, v),

σx : R2 → R3, σx(u, v) = (u2 + v2, u, v).

Plots for σy and σx are given in Figure 5.3.
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Figure 5.3. Plots for σy (left) and σx (right) in Example 5.4.

Now, the main feature in Examples 5.3 and 5.4 is that those objects are described using two
parameters. In particular, to construct objects that seem “surface-like”, there is no need for the
parameters (say, u and v) to directly represent two of the Cartesian components x, y, z. Thus, we
can expand our possibilities by considering more general maps of the form

σ : R2 → R3, σ(u, v) = (σ1(u, v), σ2(u, v), σ3(u, v)).

Example 5.5. The cylinder x2 + y2 = 1 can described as the image of

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

A plot for this σ can be found in Figure 5.4.
If you have not had much experience with drawing 2-dimensional objects, then you may be

wondering how this σ can be plotted. One simple strategy is to hold one of the two parameters,
say u, constant. Then, by varying v, one obtains a curve that can be plotted using our previous
experiences with graphing curves; in this case, these are vertical lines in the z-direction, whose
position depends on the fixed value of u. By sampling sufficiently many values for u, one plots
enough vertical lines so that the overall shape of the figure can be reasonably guessed.
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Alternatively, if we fix v instead and vary u, then we obtain unit circles about the z-axis, whose
z-heights depend on the chosen fixed value for v. Again, with enough values sampled for v, we can
piece together these circles into the cylinder in Figure 5.4.
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Figure 5.4. Plots for the functions in Examples 5.5 (left) and 5.6 (right).

Example 5.6. One representation of the torus (the formal name for the doughnut-shaped object
you saw in Figure 1.7) is given by the image of the map

σ : R2 → R3, σ(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

A plot for this σ is also found in Figure 5.4.

All our examples thus far (and also almost all the examples in the remainder of these notes)
feature surfaces embedded in 3-dimensional space. However, like in our discussions for curves, a
portion of the theory that we will study will also apply to surfaces embedded in higher dimensions.
In other words, we can also consider functions of the form

σ : R2 → Rn, σ(u, v) = (σ1(u, v), σ2(u, v), . . . , σn(u, v)).

We will state which parts of the theory are special to surfaces in R3 and which apply more generally.
However, if you prefer more concrete objects, you are safe to always assume n = 3.

Furthermore, it would be too constraining to require that these functions σ that we have been
considering always be defined on all of R2. For example, one natural way to describe the upper
hemisphere is via a function defined on the unit disk:

Example 5.7. Consider now the upper (unit) hemisphere in R3, which can be described by

x2 + y2 + z2 = 1, z > 0.

Moreover, if we define B0 to be the open unit disk in R2,

B0 = {(u, v) ∈ R2 | u2 + v2 < 1},

then this upper hemisphere can also be characterised as the image of

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2).

For a plot of this σ, see Figure 5.5.
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Figure 5.5. Plot for the function
σ from Example 5.7.

Example 5.7 shows it is useful to consider maps whose
domains are not all of R2. The natural question to ask,
then, is what kinds of domains should be permitted.

Recall that for parametric curves, the 1-dimensional
analogues for these σ, the domains we allowed were open
intervals. Such intervals are convenient as domains be-
cause of two of their defining properties:

• They are “open”, meaning roughly that they have
no “boundary points”, or “endpoints”.

• They are “connected”, i.e. given any two points
on this domain, the line segment connecting the two points also lies in this domain.

The idea is that for our surface-parametrising functions σ, we wish to allow domains with
corresponding properties of being “open” and “connected”. Of course, we must first determine what
these terms would mean in the 2-dimensional context. These are, in fact, fundamental questions
in the field of mathematics known as topology. To not distract from our present discussion, here
we will give only a very brief discussion of these questions.

Figure 5.6. The shaded
“blob” is a connected and
open subset of R2.

First, we wish to characterise “openness” by a domain lacking
boundary points. Consider now a subset A ⊆ R2. One way to
describe a boundary point p of A is as follows: if we stand on this
point p, then there is some direction from p such that if we take
even the smallest step in that direction, then we would no longer
be in A. Therefore, we can describe q not being a boundary point
of A by the property that if we were to take a small enough step
from q in any direction, then we would still remain in A. This is
formally captured in the following definition:

Definition 5.1. A subset U ⊆ R2 is said to open iff for any q ∈ U,
there is some open rectangle R = (a, b) × (c, d) such that q ∈ R
and R ⊆ U. (In other words, U has no boundary points.)

Example 5.8. The following subsets of R2 are open:
(1) Any open rectangle (a, b)× (c, d).
(2) The unit disk, B0 = {(u, v) ∈ R2 | u2 + v2 < 1}.
(3) Any disk B(q, r) = {p ∈ R2 | |p − q| < r}.
(4) Informally, any “blob shape without boundary”; see Figure 5.6 for an example.

The second notion, “connectedness”, is easier to define in this context. The only point to keep in
mind is that on a 2-dimensional domain, one can connect two points in many more ways than just
a line segment. As a result, we extend our previous characterisation in one dimension as follows:

Definition 5.2. An open subset U ⊆ R2 is said to be connected iff for any two points p,q ∈ U,
there is a curve, lying entirely in U, that connects p to q.
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Remark. For more general discussions on open and connected sets, see [2, 7, 12].

After all these considerations, we finally arrive at our definition of parametrised surfaces:

Definition 5.3. A parametric surface (also called a parametrisation in some contexts) is a smooth
function σ : U→ Rn, where U is a connected open subset of R2.

In particular, all the objects in Examples 5.1-5.7 are parametric surfaces.

Remark. The term “smooth” in Definition 5.3 means that we can take as many derivatives of σ as
we like; see the subsequent subsection for discussions on derivatives.

5.1.2. Partial Derivatives. Recall that for a parametric curve γ : I→ Rn, which one can view as a
particle travelling along a trajectory, its derivative γ ′ captures its velocity, or its rate of change of
its position. Similarly, for a parametric surface σ : U → Rn, we can also consider its derivatives,
although the specifics of this situation will be a bit different.

Since σ is a function of two variables, one would not differentiate it in the same manner as γ.
Instead, a natural notion to consider is that of a partial derivative from multivariable calculus—by
fixing one of the two variables, we can then view σ as a function of the single remaining variable
and hence differentiate it as before. This leads us to the following definition:

Definition 5.4. Let σ : U → Rn be a parametric surface, and fix (u0, v0) ∈ U. We define the
partial derivative of σ at (u0, v0) with respect to u and v, respectively, by

∂uσ(u0, v0) = lim
u→u0

σ(u, v0) − σ(u0, v0)

u− u0
,(5.2)

∂vσ(u0, v0) = lim
v→v0

σ(u0, v) − σ(u0, v0)

v− v0
.

How can we interpret these partial derivatives? Consider the parametric curve in Rn given by

γ(u) = σ(u, v0),

that is, we fix v0 and vary only u in σ. In particular, γ is a parametric curve that is on lying on
the image of σ. Now, if we take a derivative of γ at u0, we then obtain

γ ′(u0) = lim
u→u0

γ(u) − γ(u0)

u− u0
= lim

u→u0
σ(u, v0) − σ(u, v0)

u− u0
= ∂uσ(u0, v0).

In other words, we can view the partial derivative ∂uσ as the velocities of the family of curves on
σ obtained by holding v constant at various values.

Similarly, the parametric curve on σ given by

λ(v) = σ(u0, v)

has its derivative given by

λ ′(v0) = lim
v→v0

λ(v) − λ(v0)

v− v0
= lim

v→v0
σ(u0, v) − σ(u0, v0)

v− v0
= ∂vσ(u0, v0).

Thus, we can view ∂vσ as the velocities of curves on σ obtained by holding u constant. For a
graphical demonstration of these curves γ and λ, see Figure 5.7 below.
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Figure 5.7. Two copies of the upper hemisphere from Example 5.7. In the
left diagram, some curves γ, with v held constant, are drawn; in the right
diagram, some curves λ, with u held constant, are drawn.

Example 5.9. Let σ be the parametrised upper hemisphere from Example 5.7 and Figure 5.5,

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2),

where B0 is the unit disk about the origin in R2. In terms of the above language, we then have

γ(u) = σ(u, v0) =

(
u, v0,

√
(1− v20) − u

2

)
,

λ(v) = σ(u0, v) =

(
u0, v,

√
(1− u20) − v

2

)
.

Various instances of γ’s and λ’s are plotted in Figure 5.7. In particular, the ∂uσ’s and ∂vσ’s
are given precisely as the velocities of these red and green curves, respectively.

Now that we have an intuitive idea of what these partial derivatives represent, let us discuss
how these can be computed. Here, the situation is completely analogous to that for calculating
derivatives of parametric curves: we can differentiate σ componentwise.

Theorem 5.1. Let σ : U→ Rn be a parametric surface, and let

σ(u, v) = (σ1(u, v), σ2(u, v), . . . , σn(u, v)) ∈ Rn,

where the real-valued σk : U→ Rn represents the k-th component of σ. Then, for any (u0, v0) ∈ U,

∂uσ(u0, v0) = (∂uσ1(u0, v0), . . . , ∂uσn(u0, v0)),(5.3)
∂vσ(u0, v0) = (∂vσ1(u0, v0), . . . , ∂vσn(u0, v0)),

where the symbols ∂u and ∂v in the right-hand sides of equation (5.3) denote the standard partial
derivatives of real-valued functions in multivariable calculus.

Proof. The proof is like that of Theorem 2.2. To demonstrate, let us take ∂uσ when n = 3 for
simplicity. (The remaining cases can be proved similarly.) Since limits are taken componentwise,

∂uσ(u0, v0) = lim
u→u0

σ(u, v0) − σ(u0, v0)

u− u0
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= lim
u→u0

(
σ1(u, v0) − σ1(u0, v0)

u− u0
,
σ2(u, v0) − σ2(u0, v0)

u− u0
,
σ3(u, v0) − σ3(u0, v0)

u− u0

)
= (∂uσ1(u0, v0), ∂uσ2(u0, v0), ∂uσ3(u0, v0)).

In the last equality, we used the definition of standard partial derivatives. □

In other words, to take a partial derivative of σ, we need only take partial derivatives of its
individual components σk. The latter task is a basic tenet of multivariable and vector calculus;
most of you will have already encountered this in MTH4101/4201: Calculus II.
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Figure 5.8. The plots contain the setup from Example 5.10. The north
pole σ(0, 0) is marked in each plot. The left diagram depicts ∂uσ(0, 0) (blue)
as the derivative of γ(u) = σ(u, 0) (pink), while the right diagram depicts
∂vσ(0, 0) (purple) as the derivative of λ(v) = σ(0, v) (teal).

Example 5.10. Let us return to the σ from Example 5.9,

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2).

Let us now compute both of its partial derivatives.
To compute ∂uσ, we apply Proposition 5.1, which tells us that we need only hold v constant and

then differentiate each component of σ with respect to u separately. From this, we obtain

∂uσ(u, v) =

(
1, 0,

1

2
· ∂u(1− u

2 − v2)√
1− u2 − v2

)
=

(
1, 0,−

u√
1− u2 − v2

)
.

(Note that we applied both the power rule and the chain rule in the above line.) Next, holding u
constant and differentiating with respect to v, we similarly compute that

∂vσ(u, v) =

(
0, 1,

1

2
· ∂v(1− u

2 − v2)

2
√
1− u2 − v2

)
=

(
0, 1,−

v√
1− u2 − v2

)
.

In particular, at (u0, v0) = (0, 0), which corresponds to the north pole

σ(u0, v0) = σ(0, 0) = (0, 0, 1),

we have that
∂uσ(0, 0) = (1, 0, 0), ∂vσ(0, 0) = (0, 1, 0).

These vectors are plotted in Figure 5.8.
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Example 5.11. Consider the (parametric) torus from Example 5.6,

σ : R2 → R3, σ(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

To compute ∂uσ and ∂vσ, we again take the corresponding partial derivatives of each component
on the right-hand side. Fixing v and differentiating with respect to u, we have

∂uσ(u, v) = (− sinu cos v,− sinu sin v, cosu).

Similarly, fixing u and differntiating with respect to v yields

∂vσ(u, v) = (−(2+ cosu) sin v, (2+ cosu) cos v, 0).

Remark. Other constructions in calculus, such as directional derivatives and gradients, also have
analogues in this setting. However, for simplicity, we will develop our theory in terms of partial
derivatives, as they represent the most elementary objects of analysis.

5.1.3. Tangent Directions. Recall that for a parametric curve γ : I → Rn, the tangent vector
γ ′(t)|γ(t) represents the direction and speed that γ is going at parameter t. Furthermore, when γ
is regular, γ ′(t)|γ(t) generates the full tangent line Tγ(t) at γ(t); see Definition 2.10.

Remark. Recall that tangent vectors were defined in Definition 2.9, while general “arrows”—vectors
based at a point—were discussed earlier in that same section. From here forward, we will use these
concepts regularly, as they are quite useful for intuition. Thus, the reader may want to revise their
knowledge and understanding of these concepts.

We can then ask what the analogous structure is for parametric surfaces:

Question 5.2. Given a parametric surface, how do we describe the directions tangent to it?
Moreover, what structures do these sets of directions have?

To investigate this, we let σ : U→ Rn denote a parametric surface. Furthermore, we fix a point
(u0, v0) ∈ U, so that p0 = σ(u0, v0) ∈ Rn represents a point on this parametric surface.

Recall from the preceding subsection that

γ(u) = σ(u, v0), λ(v) = σ(u0, v)

define parametric curves lying in the image of σ. Moreover, at u = u0, the tangent vector of γ is

γ ′(u0)|γ(u0) = ∂uσ(u0, v0)|σ(u0,v0) = ∂uσ(u0, v0)|p0
.

Since the above is tangent to γ, which is lying in σ, it follows that the “arrow” ∂uσ(u0, v0)|p0
is

tangent to σ at the point p0 as well. Similarly, at v = v0, the tangent vector of λ is

λ ′(v0)|λ(u0) = ∂vσ(u0, v0)|σ(u0,v0) = ∂vσ(u0, v0)|p0
,

hence ∂vσ(u0, v0)|p0
is also tangent to σ at the point p0.

Combining the above observations, we conclude that ∂uσ(u0, v0)|p0
and ∂vσ(u0, v0)|p0

represent
two directions which are tangent to σ at p0 = σ(u0, v0).
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Example 5.12. Let us go back to the upper hemisphere from Examples 5.9 and 5.10,

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2).

We now retrace the above discussion for this σ, with

(u0, v0) = (0, 0), p0 = σ(u0, v0) = (0, 0, 1).

Recalling the computations we already made in Example 5.10, we see that two “arrows” which are
tangent to σ at the point p0 = (0, 0, 1) are given by

∂uσ(0, 0)|p0
= (1, 0, 0)|(0,0,1), ∂vσ(0, 0)|p0

= (0, 1, 0)|(0,1,0).

Within Figure 5.8, these are represented by the blue (∂uσ) and purple (∂vσ) arrows, respectively.

Returning once again to the general case, we note that while ∂uσ(u0, v0)|p0
and ∂vσ(u0, v0)|p0

potentially yield us two tangent directions to σ at p0, this does not yet tell us what other tangent
directions remain to be found. Recall that the goal from Question 5.2 is to find all tangent
directions to σ at p0. For this, we will have to take a more general outlook.

The idea is now to take another parametric curve α lying on the image of σ that passes through
this point p0. By measuring its derivative α ′ at p0, we capture yet another such tangent direction
of σ. Therefore, by doing this for every possible α, we will obtain all tangent directions.

Now, since α(t) lies in the image of σ, we can write, for any t,

α(t) = σ(u(t), v(t))

for some real-valued functions u and v. In particular, these functions u and v contain the compo-
nents of α, with respect to the σ-parametrisation. See Figure 5.9 for a graphical representation;
the plane curve t 7→ (u(t), v(t)) is graphed in red in the left diagram (the uv-plane), while the
corresponding curve α is plotted in the right diagram (the image of σ).

Suppose, for convenience, that u(0) = u0 and v(0) = v0, so that

α(0) = σ(u0, v0) = p0.

Then, measuring α ′(0)|α(0) produces a tangent direction to σ at p0. To find α ′(0), we first observe

α ′(0) =
d

dt
[σ(u(t), v(t))]

∣∣∣∣
t=0

.

For the right-hand side, we recall the (multivariable) chain rule, which yields

α ′(0) = ∂uσ(u(t), v(t)) · u ′(t)|t=0 + ∂vσ(u(t), v(t)) · v ′(t)|t=0
= u ′(0) · ∂uσ(u0, v0) + v ′(0) · ∂vσ(u0, v0),

and hence

(5.4) α ′(0)|α(0) = u
′(0) · ∂uσ(u0, v0)|p0

+ v ′(0) · ∂vσ(u0, v0)|p0
.

In Figure 5.9, the quantities α ′(0)|α(0), ∂uσ(u0, v0)|p0
, and ∂vσ(u0, v0)|p0

are drawn in the right
diagram in orange, blue, and purple, respectively. The corresponding objects in the uv-plane are
drawn in the left diagram using the same colours.
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Figure 5.9. Again, the upper hemisphere from Examples 5.9, 5.10, and
5.12. The right diagram shows a parametric curve α passing through the
north pole α(0) = (0, 0, 1). The vectors α ′(0)|(0,0,1) (orange), ∂uσ(0, 0)|(0,0,1)
(blue), and ∂vσ(0, 0)|(0,0,1) (green) are also shown. The left diagram shows
the corresponding picture in the uv-plane; for instance, the parametric curve
(u(t), v(t)) is shown in red. Objects with a given colour in the left diagram
map, via σ, to the object with the same colour in the right.

Let us now parse the relation (5.4) to understand what we have done:
• On the left-hand side is the tangent vector α ′(0)|p0

, which is tangent to σ.
• On the right-hand side is a linear combination of the two “special” tangent directions
∂uσ(u0, v0)|p0

and ∂vσ(u0, v0)|p0
that we found. The quantities u ′(0) and v ′(0) are two

constants which are determined by the details of α.
Furthermore, the above computation applies to any arbitrary α that goes through p0, hence any
tangent direction to σ at p0 can be described using (5.4).

As a result, (5.4) can now be interpreted as follows: any tangent direction to σ at p0 = σ(u0, v0)
can be captured as a linear combination of the tangent vectors ∂uσ(u0, v0)|p0

and ∂vσ(u0, v0)|p0
.

From linear algebra, you should know that if you take all linear combinations of two vectors, i.e.

S = {av + bw | a, b ∈ R}, v,w ∈ Rn,

then this resulting collection S will generally be a 2-dimensional (vector) space, that is, a plane.
This argument finally leads us to the following definition:

Definition 5.5. Let σ : U→ Rn be a parametric surface, and let (u0, v0) ∈ U. Then, the tangent
plane of σ at p0 = σ(u0, v0) (or alternatively, at parameter (u0, v0)) is defined to be

Tσ(u0, v0) = {a · ∂uσ(u0, v0)|p0
+ b · ∂vσ(u0, v0)|p0

| a, b ∈ R}(5.5)
= span{∂uσ(u0, v0)|p0

, ∂vσ(u0, v0)|p0
}.

An element v|p0
∈ Tσ(u0, v0) is called a tangent vector of σ at p0.
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Example 5.13. In the case of the upper hemisphere,

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2),

we computed in Exercise 5.10 that

∂uσ(0, 0)|(0,0,1) = (1, 0, 0), ∂vσ(0, 0)|(0,0,1) = (0, 1, 0).

Thus, by Definition 5.5, the tangent plane of σ at (0, 0, 1) is

Tσ(0, 0) = {a · ∂uσ(u0, v0)|(0,0,1) + b · ∂vσ(u0, v0)|(0,0,1) | a, b ∈ R}

= {a · (1, 0, 0)|(0,0,1) + b · (0, 1, 0)|(0,0,1) | a, b ∈ R}

= {(a, b, 0)|(0,0,1) | a, b ∈ R}.

Tσ(0, 0) and some tangent vectors there are drawn in Figure 5.10 (on the left).
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Figure 5.10. The left diagram shows the tangent plane T0σ(0, 0) from
Example 5.13. The tangent vectors (1, 0, 0)|(0,0,1) and (0, 1, 0)|(0,0,1) are drawn
in blue and purple, as usual; other examples of tangent vectors are depicted
in brown. The right diagram shows the corresponding tangent plane Tσ(0, 0)
from Example 5.15 below, along with some tangent vectors.

Finally, like for the tangent line of a curve, we can also equivalently describe the tangent plane
as a set of points. In the case of Definition 5.5, this would be the plane passing through p0 which
contains the directions ∂uσ(u0, v0)|p0

and ∂vσ(u0, v0)|p0
. This can be described as follows:

Definition 5.6. Let σ and (u0, v0) be as before, in Definition 5.5. Then, we can also define the
tangent plane of σ at p0 = σ(u0, v0) to be the set

(5.6) Tσ(u0, v0) = {p0 + a · ∂uσ(u0, v0) + b · ∂vσ(u0, v0) | a, b ∈ R}.

Example 5.14. Continuing from Example 5.13, the tangent plane of σ at (0, 0, 1), described in
terms of Definition 5.6 as a set of points, is then

Tσ(0, 0) = {(0, 0, 1) + a · (1, 0, 0) + b · (0, 1, 0) | a, b ∈ R}
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= {(a, b, 1) | a, b ∈ R}.

Visually, this is also described through the left plot in Figure 5.10.

Example 5.15. Let us return to the torus from Example 5.6,

σ : R2 → R3, σ(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

For the sake of concreteness, we now take

(u0, v0) = (0, 0), p0 = σ(u0, v0) = (3, 0, 0).

Recall from Example 5.11 that

∂uσ(u, v) = (− sinu cos v,− sinu sin v, cosu),
∂vσ(u, v) = (−(2+ cosu) sin v, (2+ cosu) cos v, 0).

In particular, at (u0, v0) = (0, 0), we have

∂uσ(0, 0)|p0
= (0, 0, 1)|(3,0,0), ∂vσ(0, 0)|p0

= (0, 3, 0)|(3,0,0).

Thus, the tangent plane of σ at p0 = (3, 0, 0) (according to both Definitions 5.5 and 5.6), is

Tσ(0, 0) = {a(0, 0, 1)|(3,0,0) + b(0, 3, 0)|(3,0,0) | a, b ∈ R} = {(0, a, b)|(3,0,0) | a, b ∈ R},
Tσ(0, 0) = {(3, 0, 0) + a(0, 0, 1) + b(0, 3, 0) | a, b ∈ R} = {(3, a, b) | a, b ∈ R}.

A plot of this is given in the right plot of Figure 5.10.

Remark. The characterisation of tangent planes in Definition 5.6 (as a set of points) might seem
more intuitive at first. However, Definition 5.5 (in terms of tangent vectors) captures the vector
space structure of the tangent plane. This will be important in some discussions later.

5.1.4. Regular Parametrisations. Before we continue our discussion on surfaces and how they are
formally defined, let us first pause and take note of how the things we have constructed thus far can
go wrong. Recall that the purpose of defining parametric surfaces was as a step toward defining
surfaces, that is, “2-dimensional geometric objects”. However, there are several ways in which a
parametric surface, as defined in Definition 5.3, intuitively fails to be 2-dimensional in nature.

Let us begin with the worst:

Example 5.16. Consider the parametric surface

σ : R2 → R3, σ(u, v) = (1, 2, 0).

Here, the image of σ is only a single point, (1, 2, 0). Although σ has a 2-dimensional description by
being a function of two variables, the resulting object (one point) parametrised by σ is 0-dimensional.

The degenerate nature of σ can also be captured through its tangent planes. Indeed, since

∂uσ(u, v) = (0, 0, 0), ∂vσ(u, v) = (0, 0, 0),

then the tangent plane satisfies the following:
• In terms of tangent vectors, Tσ(u, v) contains only the zero vector, 0|(1,2,0).
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• As a set of points, Tσ(u, v) contains only a single point, (1, 2, 0).

However, the situation needs not be so bad for a parametric surface to fail at being 2-dimensional.
The next example considers one which degenerates in only one dimension.

Example 5.17. Consider next the parametric surface

σ : R2 → R3, σ(u, v) = (cosu, sinu, 1).

Here, the image of σ is merely a (1-dimensional) circle (see the right plot in Figure 5.11).
At the derivative level, since

∂uσ(u, v) = (− sinu, cosu, 0), ∂vσ(u, v) = (0, 0, 0),

the tangent plane is also merely a line:

Tσ(u, v) = {a · (− sinu, cosu, 0)|(cosu,sinu,1) | a ∈ R},
Tσ(u, v) = {(cosu, sinu, 1) + a · (− sinu, cosu, 0) | a ∈ R}.
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Figure 5.11. The left diagram contains the parametric surface σ (in green)
from Example 5.16. The right diagram contains the parametric surface σ
(in red) from Example 5.16; the point σ( 3π

2
, 1) is indicated in green, while

the tangent “plane” Tσ( 3π2 , 1) is drawn in blue.

In both Examples 5.16 and 5.17, the parametric surfaces were exceedingly pathological, in that
these σ depended only on zero and one out of the two variables, respectively. However, even
if we were to exclude these exceptional cases, we can still find more benign situations where a
parametrisation is undesirable. To demonstrate, we consider the following example:

Example 5.18. Consider the parametric surface

σ : R×
(
−
π

2
,
π

2

)→ R2, σ(u, v) = (cosu sin v, sinu sin v, cos v).

Note that the partial derivatives of σ are given by

∂uσ(u, v) = (− sinu sin v, cosu sin v, 0), ∂vσ(u, v) = (cosu cos v, sinu cos v,− sin v).

We claim that this σ parametrises exactly the same upper hemisphere as in previous examples
(see, for instance, Example 5.9). To see this, observe that the above formulas that define σ represent
standard spherical coordinates. More specifically, observe that:
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• u represents the polar angle in the xy-plane.
• v represents the angle from the positive z-axis (i.e. the azimuthal angle).

Thus, in contrast to Examples 5.16 and 5.17, this σ represents an honest 2-dimensional object.
Note that the parameter (u, v) = (0, 0) corresponds to the north pole:

σ(0, 0) = (0, 0, 1).

Furthermore, evaluating the partial derivatives of σ at (0, 0), we have

∂uσ(0, 0) = (0, 0, 0), ∂vσ(0, 0) = (1, 0, 0).

Thus, the corresponding tangent plane of σ at the north pole is

Tσ(0, 0) = {b · (1, 0, 0)|(0,0,1) | b ∈ R},

which represents a 1-dimensional line, not a 2-dimensional plane.
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Figure 5.12. Both plots contain the upper hemisphere σ from Example
5.18. In the left plot, the blue curves are generated by holding v constant
and varying u, while the purple curves are generated by holding u constant
and varying v. In the right plot, the point σ(0, 0) = (0, 0, 1) is indicated in
green, and Tσ(0, 0) is depicted in brown.

Although the image of σ from Example 5.18 is 2-dimensional, σ fails to generate a reasonable
tangent plane at the north pole. To see what went wrong, let us fix v = 0 and vary u:

λ(u) = σ(u, 0) = (0, 0, 1).

In other words, when v = 0, varying u does not change the value of σ. This results in the loss of
the “u-dimension” from the tangent plane Tσ(0, 0).

One way to interpret the situation in Example 5.18 is that this σ is an undesirable way to
parametrise the upper hemisphere. The tangent plane Tσ(0, 0), representing the directions one can
go along this hemisphere while at the north pole, is a fundamental geometric feature. Thus, σ is
deficient in that it fails to adequately capture this geometric feature at the north pole.

Consequently, just as we excluded undesirable parametric curves through the notion of regular
parametrisations (see Definition 2.4), we also wish to accomplish an analogous task for parametric
surfaces. Thinking from the other direction, we can ask: what does it take for a parametric surface
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to “not be deficient”? Since the aforementioned deficiency arose from the loss of a dimension in
the tangent plane, it seems reasonable to associate “not deficient” with the tangent plane spanning
two full dimensions. This leads us to make the following definition:

Definition 5.7. A parametric surface σ : U → Rn is regular iff for any (u, v) ∈ U, the vectors
∂uσ(u, v) and ∂vσ(u, v) are linearly independent, that is, they point in different directions.

To bring the discussion back to tangent planes, we exploit the connection between Definition
5.7 and linear algebra. In particular, σ is regular if and only if ∂uσ(u, v) and ∂vσ(u, v) span a 2-
dimensional vector space. Since the tangent plane Tσ(u, v) is simply the linear span of the tangent
vectors ∂uσ(u, v)|σ(u,v) and ∂vσ(u, v)|σ(u,v), then Tσ(u, v) is also a 2-dimensional vector space.

From the above argument, we now conclude the following:

Theorem 5.2. A parametric surface σ : U→ Rn is regular if and only if for any (u, v), the tangent
plane Tσ(u, v) is a 2-dimensional vector space. Furthermore, when σ is regular, then ∂uσ(u, v)|σ(u,v)
and ∂vσ(u, v)|σ(u,v) form a basis for the vector space Tσ(u, v) (for any (u, v) ∈ U).

Example 5.19. Consider our original parametrisation of the upper hemisphere,

σ : B0 → R3, σ(u, v) = (u, v,
√
1− u2 − v2).

In Example 5.10, we already computed the partial derivatives of σ:

∂uσ(u, v) =

(
1, 0,

1

2
· ∂u(1− u

2 − v2)√
1− u2 − v2

)
=

(
1, 0,−

u√
1− u2 − v2

)
,

∂vσ(u, v) =

(
0, 1,

1

2
· ∂v(1− u

2 − v2)

2
√
1− u2 − v2

)
=

(
0, 1,−

v√
1− u2 − v2

)
.

Note that for any (u, v) ∈ B0, the vector ∂uσ(u, v) always has a nonzero x-component and a
zero y-component, while ∂vσ(u, v) always has a nonzero y-component and a zero x-component.
Therefore, ∂uσ(u, v) and ∂vσ(u, v) always point in different directions and hence are linearly
independent. By Definition 5.7, we conclude that σ is regular.

In Example 5.19, it was relatively easy to see by inspection that ∂uσ and ∂vσ are everywhere
linearly independent. For other parametric surfaces, this inspection may not be so simple. Thus, we
may ask whether there is a simpler, more computational method for checking whether a parametric
surface is regular. It turns out that when n = 3, a convenient method does exist:

Theorem 5.3. A parametric surface σ : U→ R3 in 3-dimensional space is regular if and only if

(5.7) |∂uσ(u, v)× ∂vσ(u, v)| ̸= 0

for any parameters (u, v) ∈ U.

Proof. Recall from Proposition 3.13 that

|∂uσ(u, v)× ∂vσ(u, v)| = |∂uσ(u, v)||∂vσ(u, v)| sin θ,

where θ is the angle made between ∂uσ(u, v)|σ(u,v) and ∂vσ(u, v)|σ(u,v). Thus, (5.7) holds if and only
if both ∂uσ(u, v) and ∂vσ(u, v) are nonzero and sin θ ̸= 0. Furthermore, sin θ ̸= 0 is equivalent



112 (MTH5109) LECTURE NOTES

to ∂uσ(u, v) and ∂vσ(u, v) pointing in different directions. Combining all the above, we conclude
that (5.7) is indeed equivalent to σ being regular. □

Let us conclude by applying Theorem 5.3 to the torus:

Example 5.20. Consider the torus from Example 5.6 (see also Figure 5.4),

σ : R2 → R3, σ(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

Recall from Example 5.11 that

∂uσ(u, v) = (− sinu cos v,− sinu sin v, cosu),
∂vσ(u, v) = (−(2+ cosu) sin v, (2+ cosu) cos v, 0).

Taking a cross product of the above yields

∂uσ(u, v)× ∂vσ(u, v) = −(2+ cosu)(cosu cos v, cosu sin v, sinu),

for which the norm is

|∂uσ(u, v)× ∂vσ(u, v)| = (2+ cosu)(cos2 u cos2 v+ cos2 u sin2 v+ sin2 u)

= (2+ cosu)(cos2 u+ sin2 u)

= 2+ cosu.

Since this is everywhere nonzero, Theorem 5.3 implies that σ is regular.

Remark. The notion of regularity for parametric curves can also be characterised in terms of the
tangent line. In particular, a parametric curve γ is regular if and only if all of its tangent lines
Tγ(t) are one-dimensional vector spaces, that is, they are actual lines.

5.2. What is a Surface? In the previous section, we discussed how 2-dimensional geometric
objects can be constructed using parametric surfaces. In this section, we use what we have learned
to finally give an answer to Question 5.1—what exactly is a surface?

5.2.1. Multiple Parametrisations. We already discussed the importance of parametric surfaces be-
ing regular (see Definition 5.7), as this ensures that they remain “fully 2-dimensional”. However,
there are other ways that parametric surfaces can fall short of our intuitive requirements.

Example 5.21. Consider the parametric surface given by

σ : R× (−1, 1) → R3, σ(u, v) = (u2 − 1, u3 − u, v).

Taking partial derivatives of σ, we see that

∂uσ(u, v) = (2u, 3u2 − 1, 0), ∂vσ(u, v) = (0, 0, 1).

In particular,
∂uσ(u, v)× ∂vσ(u, v) = (3u2 − 1,−2u, 0),

which can never vanish entirely for any u ∈ R. Thus, Theorem 5.3 shows that σ is regular.
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Now, a plot of σ can be found in Figure 5.13. Observe that for any −1 < v < 1,

σ(−1, v) = (0, 0, v) = σ(1, v).

In other words, σ passes through itself at the line segment

L = {(0, 0, v) | −1 < v < 1}.
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Figure 5.13. The parametric surface
σ from Example 5.21. In particular, σ
passes through itself when x = y = 0.

That the image of σ in Example 5.21 intersects
itself clashes with our intuitions on what a surface
should be. As a result, here we choose to rule out this
particular scenario. In the context of a parametric
surface σ, we must make sure that every point in its
image is mapped to only once. In other words, we
must assume that σ is injective, or one-to-one.

Remark. This should be contrasted with our study of
curves in previous chapters, where self-intersections
were allowed. That we allow curves to self-intersect
and forbid surfaces to do the same (at least in this
module) is purely for cultural reasons, to align with
our basic intuitions for these words.

However, by restricting ourselves to injective para-
metric surfaces, we create new problems:

Example 5.22. Consider the cylinder x2 + y2 = 1 from Example 5.5, represented by

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

A plot of σ can be in Figure 5.4. The partial derivatives of σ are given by

∂uσ(u, v) = (− sinu, cosu, 0), ∂vσ(u, v) = (0, 0, 1).

In particular, σ is regular by Theorem 5.3, since for any (u, v) ∈ R2,

|∂uσ(u, v)× ∂vσ(u, v)| = |(cosu, sinu, 0)| = 1 > 0.

Note, however, that σ fails to be injective—for example,

σ(0, v) = (1, 0, v) = σ(2π, v), v ∈ R.

Indeed, σ repeats itself once its u-parameter has increased or decreased by 2π. Thus, for injectivity,
we must restrict its u-values to an (open) interval of length at most 2π; for instance, we can take

σ1 : (0, 2π)× R → R3, σ1(u, v) = (cosu, sinu, v).

Unfortunately, σ1 creates a new shortcoming, because now the points

(1, 0, v) = σ(0, v), v ∈ R
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are missing from the image of σ1. In other words, σ1 only represents the cylinder with a vertical
line removed. This problem persists no matter how we restrict the u-values of σ, as long as we
demand that our parametric surfaces are injective.

In fact, it is impossible to cover all of the cylinder x2+y2 = 1 using only one injective parametric
surface. To overcome this obstacle, we describe this cylinder using multiple parametric surfaces:

Example 5.23. Consider now the following pair of parametric surfaces:

σ1 : (0, 2π)× R → R3, σ1(u, v) = (cosu, sinu, v),

σ2 : (−π, π)× R → R3, σ2(u, v) = (cosu, sinu, v).

Note both σ1 and σ2 are regular and injective parametric surfaces. Also, both σ1 and σ2 cover all
of the cylinder x2 + y2 = 1 except for a single vertical line; see Figure 5.14 below.

The main point, though, is that σ1 and σ2 exclude different vertical lines. Thus, the images of
σ1 and σ2 together cover precisely the full cylinder x2 + y2 = 1.
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Figure 5.14. The left plot shows the image of σ1, which covers all of the
cylinder x2+y2 = 1 except for the green line segment. The right plot shows
the image of σ2, covering all of the cylinder except for the magenta segment.

Remark. In Example 5.22, one may instead consider letting u lie in the interval [0, 2π). However,
by doing so, the corresponding domain, [0, 2π) × R, would then fail to be an open subset, which
creates even bigger problems in the long run. In particular, allowing non-open domains in general
would allow for many undesirable objects that violate our intuitions regarding surfaces.

Recall that although the cylinder x2+y2 = 1 cannot be covered by a single injective parametric
surface, the σ from Example 5.22 that does cover this cylinder is still perfectly regular. Next, we
consider an example of a situation that is considerably worse.
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Definition 5.8. Let S2 denote the unit sphere about the origin in R3:

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

A plot of the sphere is given in the left diagram in Figure 5.15.
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Figure 5.15. The left plot shows the unit sphere x2 + y2 + z2 = 1, i.e. the
image of σ from Example 5.24. The right plot shows the image of σs from
Example 5.24: the unit sphere except for the poles (0, 0,±1) (in magenta).

Example 5.24. We can cover all of S2 using the spherial coordinates from Example 5.18:

σ : R2 → R3, σ(u, v) = (cosu sin v, sinu sin v, cos v).

(That this σ covers S2 follows from the usual study of spherical coordinates from multivariable
calculus.) Computing the partial derivatives of σ yields

∂uσ(u, v) = (− sinu sin v, cosu sin v, 0),
∂vσ(u, v) = (cosu cos v, sinu cos v,− sin v).

Taking their cross product, we obtain that

∂uσ(u, v)× ∂vσ(u, v) = (− cosu sin2 v,− sinu sin2 v,− sin v cos v)

= − sin v(cosu sin v, sinu sin v, cos v),
|∂uσ(u, v)× ∂vσ(u, v)| = | sin v| · |(cosu sin v, sinu sin v, cos v)|

= | sin v|
√

cos2 u sin2 v+ sin2 u sin2 v+ cos2 v

= | sin v|.

In particular, |∂uσ(u, v) × ∂vσ(u, v)| vanishes whenever sin v = 0—for instance, at v = 0 and
v = π. Therefore, by Theorem 5.3, we see that σ fails to be regular.

For regularity, we must restrict σ away from where sin v vanishes. For example, we can restrict
its v-values to the interval (0, π). In other words, the following parametric surface is regular:

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v).
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Observe that σs covers all of S2 except for the north pole (0, 0, 1) (which corresponds to v = 0) and
the south pole (0, 0,−1) (which corresponds to v = π).

More generally, one can actually show that it is impossible to find a single regular parametric
surface, injective or otherwise, that covers all of S2. This shows an even more pressing need to use
multiple parametric surfaces when devising the formal definition of surfaces.

Below, we show one way to cover S2 with both regular and injective parametric surfaces.

Example 5.25. Recall from Example 5.7 that the parametric surface

σz,+ : B0 → R3, σz,+(u, v) = (u, v,
√
1− u2 − v2),

where B0 is the open unit disk about the origin in R2, covers the upper hemisphere of S2. If we
negate the z-component, that is, we define the parametric surface

σz,− : B0 → R3, σz,+(u, v) = (u, v,−
√
1− u2 − v2),

then this σz,− covers instead the lower hemisphere of S2. Observe that σz,+ and σz,− combined cover
all of S2 except for the equator—the points of S2 satisfying z = 0.

To cover the missing equator, we can swap coordinates and consider

σy,+ : B0 → R3, σy,+(u, v) = (u,
√
1− u2 − v2, v),

σy,− : B0 → R3, σy,+(u, v) = (u,−
√
1− u2 − v2, v),

which cover the hemispheres given by y > 0 and y < 0. Then, the four parametric surfaces σz,±,
σy,± combined cover all the points of S2 except for the poles (±1, 0, 0) (corresponding to y = z = 0).

To take care of the last two points, we consider the hemispheres with respect to x:

σx,+ : B0 → R3, σx,+(u, v) = (
√
1− u2 − v2, u, v),

σx,− : B0 → R3, σx,+(u, v) = (−
√
1− u2 − v2, u, v),

Then, the six parametric surfaces σz,±, σy,±, σx,± together cover all of S2; see Figure 5.16 below.
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Figure 5.16. The six injective and regular parametric surfaces from Ex-
ample 5.25: σz,± (left), σy,± (middle), and σx,± (right).
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A similar “patching” of S2 can be made using spherical coordinates:

Example 5.26. Let us return to spherical coordinates on S2—namely, the parametric surface σs
from Example 5.24. Like in the case of the cylinder (see Example 5.23), in order to make σs
injective, we must restrict the polar angle u to a interval of length at most 2π.

More specifically, if we define

σs,z : (0, 2π)× (0, π) → R3, σs,z(u, v) = (cosu sin v, sinu sin v, cos v),

then this σs,z covers all of S2 except for a single half circle (see the left drawing in Figure 5.17).
To cover this missing half circle, we must supplement σs,z with other parametric surfaces. For
example, this can be accomplished by swapping coordinates:

σs,y : (0, 2π)× (0, π) → R3, σs,y(u, v) = (sinu sin v, cos v, cosu sin v),

σs,x : (0, 2π)× (0, π) → R3, σs,x(u, v) = (cos v, cosu sin v, sinu sin v).

Although each of σs,y and σs,x also misses a half circle (see the middle and right diagrams in Figure
5.17), the three parametrisations σs,z, σs,y, and σs,x together cover all of S2.
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Figure 5.17. The parametric surfaces σs,z (left), σs,y (right), σs,x (right)
from Example 5.26. Each of these parametrisations covers all of S2 except
for a single half circle, drawn in magenta in each diagram.

5.2.2. A Precise Definition. From the preceding discussions, we come across the conclusion that
general 2-dimensional objects should be constructed using one or more regular and injective para-
metric surfaces. With this idea in mind, we now concoct a precise definition of surfaces.

We begin by first generalising the previous definition of open sets (see Definition 5.1):

Definition 5.9. A subset V ⊆ Rn is open iff for any p ∈ V, there is some open “hypercube”

R = (a1, b1)× (a2, b2)× · · · × (an, bn)

such that p ∈ R and R ⊆ V.

The intuition for open subsets of Rn is exactly the same as that in Definition 5.1 for open subsets
of R2. If one were to parachute onto a point q of an open set V ⊆ Rn, then one can take a small
enough step in any direction from q and still remain in this set V .

In practice, we will use open sets in the following way: given a point p ∈ Rn, an open subset
V ⊆ Rn containing p can be considered as the set of points that are “sufficiently near” p.
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Definition 5.10. A subset S ⊆ Rn is called a surface iff for any point p ∈ S, there is
(1) An open subset V ⊆ Rn such that p ∈ V, and
(2) A regular and injective parametric surface σ : U→ S,

such that σ is a bijection between U and S ∩ V.

In short, Definition 5.10 states that every point p of S is covered by some regular and injective
parametric surface σ whose image lies in S. In other words, S is constructed by “patching together”
various (regular and injective) parametric surfaces. This is precisely the idea that was demonstrated
in Examples 5.23 and 5.25 for the cylinder and sphere, respectively.

On the other hand, what is new and mysterious in Definition 5.10 is the open subset V and the
role it plays. Basically, this has to do with ensuring that S does not “go through itself”, such as
in Example 5.21. We defer more detailed demonstrations of this point until further below.

We now demonstrate Definition 5.10 through some concrete examples:

Example 5.27. Consider the cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 1}

that was studied in Example 5.22. We now formally show that C is a surface.
Consider the subsets

V1 = {(x, y, z) ∈ R3 | x < 1}, V2 = {(x, y, z) ∈ R3 | x > −1}.

It is not too hard to see that both V1 and V2 are open subsets of R3. Furthermore, observe:
• C ∩ V1 is precisely C except for the vertical line L1 = {(1, 0, v) | v ∈ R}.
• C ∩ V2 is precisely C except for the vertical line L2 = {(−1, 0, v) | v ∈ R}.

Recall also the regular, injective parametric surfaces σ1 and σ2 from Example 5.23. In particular,
• σ1 is a bijection between U1 = (0, 2π)× R and C ∩ V1.
• σ2 is a bijection between U2 = (−π, π)× R and C ∩ V2.

With the above setup in place, consider now any point p = (x0, y0, z0) ∈ C.
• If p ̸∈ L1 (i.e. x0 ̸= 1), then V1 is an open subset of R3 containing p, and σ1 is a regular

and injective parametric surface that is also a bijection between U1 and C ∩ V1.
• Otherwise, p ̸∈ L2 (i.e. x0 ̸= −1), hence V2 is an open subset of R3 containing p. Also, σ2

is a regular and injective parametric surface that is a bijection between U2 and C ∩ V2.
Thus, we see that the conditions of Definition 5.10 are always satisfied.

In essence, Example 5.27 states, in considerable detail, that C is constructed by patching the
two regular and injective parametric surfaces σ1 and σ2 together.

Example 5.28. Next, consider the unit sphere S2 from Definition 5.8. Define the subsets

Vz,+ = {(x, y, z) ∈ R3 | z > 0}, Vz,− = {(x, y, z) ∈ R3 | z < 0},

Vy,+ = {(x, y, z) ∈ R3 | y > 0}, Vy,− = {(x, y, z) ∈ R3 | y < 0},

Vx,+ = {(x, y, z) ∈ R3 | x > 0}, Vx,− = {(x, y, z) ∈ R3 | x < 0},
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which one can show to all be open. Furthermore, recalling the (regular and injective) parametric
surfaces from Example 5.25, we observe that σz,± is a bijection between B0 and S2∩Vz,±. Analogous
relations hold between σy,±, σx,± and S2 ∩ Vy,±, S2 ∩ Vx,±, respectively.

Consider now a point p = (x0, y0, z0) ∈ S2. Since x20 + y20 + z20 = 1, then one of the coordinates
x0, y0, z0 must be nonzero, and thus p lies in one of the sets Vz,±, Vy,±, Vx,±. Thus, for this p, one
of the parametric surfaces σz,±, σy,±, σx,± will satisfy the conditions dictated in Definition 5.10.

Consequently, S2 is indeed a surface. Furthermore, the above shows that S2 can be constructed
by patching the parametric surfaces σz,±, σy,±, and σz,± together.

It is instructive to compare and contrast Definition 5.10 for surfaces with the corresponding
Definition 2.6 for curves. The main similarity is that both curves and surfaces are built using
parametrisations—parametric curves and surfaces. In particular, these parametrisations are the
concrete objects on which we can do calculus. As such, we use them to get at the geometric
properties of curves and surfaces that are of interest to us.

One simple, but striking, difference is that curves required only one parametrisation to define,
while a surface many require many parametrisations. Indeed, for a surface S, a single parametric
surface may only describe a local region of S. To describe the global geometry of S, one would
need to patch multiple parametric surfaces together. This is one demonstration of how moving to
higher dimensions often leads to significantly more complex situations.

Finally, we turn our attention toward the open set V in Definition 5.10, which had no analogue
in the definition of curves. As mentioned before, this is in place to prevent S from having self-
intersections. Rather than provide a general discussion (which extends a bit beyond the scope of
this module), we informally demonstrate this through the following example:

Example 5.29. Let S denote the image of the regular (but not injective) parametric surface,

σ : R× (−1, 1) → R3, σ(u, v) = (u2 − 1, u3 − u, v),

from Example 5.21. Consider, for instance, the point p = (0, 0, 0) ∈ S. In particular, p lies exactly
on the self-intersection of two different “strips” of S, since

p = σ(1, 0) = σ(−1, 0).

This is drawn in the left diagram in Figure 5.18.
Consider now any open subset V ⊆ Rn that contains p. Since V is open, V must extend beyond

p in every direction, i.e. V “has width in every dimension”. In particular, V must contain parts
of both strips of S that cross each other; see the right plot in Figure 5.18.

Suppose there is a regular and injective parametric surface σ that maps to S∩V, as in Definition
5.10. Then, σ maps onto a region of S containing both strips where they intersect; see the right
picture in Figure 5.18. However, this is not possible because of the smoothness of σ; where the two
strips intersect, one can only turn from one strip to the other in a jagged and non-smooth way.

(Even aside from smoothness, such a σ is impossible due to topological considerations. However,
we avoid discussing this here, as it extends beyond the scope of this module.)

As a result, Definition 5.10 would be violated at this intersection point p.
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Figure 5.18. The left plot contains S from Examples 5.21 and 5.29, with
the point p = (0, 0, 0) ∈ S indicated in green. In the right plot, S appears
as a transparent mesh; the shaded region depicts an example of a typical
region S ∩ V within S, where V ⊆ R3 is open.

Remark. We could also have used a 1-dimensional analogue of Definition 5.10 to define curves.
Doing this would have generated a corresponding notion of “curves that do not self-intersect”.

Remark. Also, one advantage of Definition 5.10 is that it can be directly generalised in order to
define higher-dimensional geometric objects (called manifolds), beyond curves and surfaces. These
are, unfortunately, well beyond the scope of the current module.

In practice, we will often be a bit lax and describe surfaces using regular parametric surfaces,
without formally checking all the conditions of Definition 5.10. The implicit understanding is
that such surfaces will have no self-intersections, and one can carefully check all the conditions of
Definition 5.10 in a manner similar to Examples 5.27 and 5.28. Furthermore, we will sometimes
use non-injective parametric surfaces, with the implicit understanding that these can be split into
injective parametrisations, as was done in Examples 5.23 and 5.25.

In light of the above, we make the following definition to simplify future writing:

Definition 5.11. Let S ⊆ Rn be a surface. We refer to any regular parametric surface σ : U→ S

mapping into S (injective or not) as a parametrisation of S.

For completeness, we conclude the present discussion with some additional examples:

Example 5.30. Let f : R2 → R be any smooth function of two variables, and let

Gf = {(u, v, f(u, v)) | u, v ∈ R},

i.e. the graph of f. We claim that Gf is a surface.
Clearly, V = R3 is an open subset of R3. Then, the parametric surface

σ : R2 → R3, σ(u, v) = (u, v, f(u, v))

is injective, and it is a bijection between R2 and Gf ∩ V = Gf. Furthermore, σ is regular, since

∂uσ(u, v) = (1, 0, ∂uf(u, v)),
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∂vσ(u, v) = (0, 1, ∂vf(u, v)),
∂uσ(u, v)× ∂vσ(u, v) = (−∂uf(u, v),−∂vf(u, v), 1) ̸= 0.

As a result, for any p ∈ Gf, the above σ is a parametrisation of S which covers p. Thus, Definition
5.10 is satisfied, and Gf is indeed a surface (defined from the single parametrisation σ).

Example 5.31. Next, recall the torus T 2 from Example 5.6, generated from the parametric surface

σ : R2 → R3, σ(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

(A plot of T 2 is found in Figure 5.4.) From the computations in Example 5.20, we had determined
that σ is regular. On the other hand, σ fails to be injective, since cos and sin are periodic.

To decompose σ into injective parametrisations of T 2, we proceed as for the cylinder in Example
5.23—we avoid including one full period of cos and sin. For this, we require four parametrisations:

σ1 : (0, 2π)× (0, 2π) → R3, σ1(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu),

σ2 : (0, 2π)× (−π, π) → R3, σ2(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu),

σ3 : (−π, π)× (0, 2π) → R3, σ3(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu),

σ4 : (−π, π)× (−π, π) → R3, σ4(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v, sinu).

Furthermore, with a bit more care, one can also observe that σ1, σ2, σ3, and σ4 are sufficient to
show that T 2 is a surface, in the sense of Definition 5.10.

5.2.3. The Ambient Dimension. Thus far, all of our concrete examples have involved surfaces lying
in 3-dimensional space. This will also be the case for nearly all of the remainder of this module.
As a result, we take a bit of time here to consider the following question:

Question 5.3. Are there surfaces that cannot be embedded in R3? In other words, if we only
consider surfaces lying in R3, then will we be missing any surfaces?

Unfortunately, the answer to Question 5.3 is yes. One interesting and notorious example is the
Klein bottle, named after Felix Klein (German mathematician, 1849–1925).

One way to approach the Klein bottle is as follows. Consider a rectangle, as in Figure 5.19.
If we glue two opposite edges of this rectangle together, as in the left diagrams in Figure 5.19,
then the resulting surface is a (finite) cylinder. Furthermore, if we were to also glue together the
remaining two edges of this rectangle (in other words, we glue together the ends of the cylinder),
then the resulting shape is a torus. See the middle drawings of Figure 5.19 for a demonstration.

Now, rather than gluing the last two edges as before, we try gluing these edges with opposite
orientations. In other words, with regards to Figure 5.19, we glue the top-left corner to the lower-
right corner, and the top-right to the lower-left. While this can be done at the abstract level, you
could not physically do this with a piece of paper. Indeed, you could not bring the edges of the
paper together in this way without passing the paper through itself.

However, such a gluing would be possible if we had an extra dimension to move about. If the
piece of paper was sitting in R4 instead, then we could “slide it along this extra dimension” to
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perform the second gluing of its edges without it passing through itself. The Klein bottle is then
the geometric object one obtains as a result of this strange gluing.

Figure 5.19. The left drawings show a rectangle with two edges glued
together, yielding a cylinder. The middle drawings show a rectangle with
both pairs of edges glued together, which results in a torus. Lastly, in the
drawings on the right, the second pair of edges are glued with opposite
orientations; the result is the famous Klein bottle.

Example 5.32. There are many ways that one can describe the Klein bottle as a surface in R4.
One description, through a (regular, non-injective) parametric surface, is given below:

σ : R2 → R4, σ(u, v) =
(
(2+ cosu) cos v, (2+ cosu) sin v, sinu cos v

2
, sinu sin v

2

)
.

With appropriate care, the image of σ can be shown to satisfy Definition 5.10.

Now, while there do exist surfaces (such as the Klein bottle) that cannot be embedded in R3,
one can prove, in rather surprising contrast, that every surface can be embedded in R4. Thus, if
we studied surfaces in R4 (and hence lost much of our ability to visualise them), we would have
essentially studied every possible surface. This result is a special case of the famous Whitney
embedding theorem, named after Hassler Whitney (American mathematician, 1907–1989).

On the other hand, while the Klein bottle could not be embedded in R3 as a surface, it is
possible to represent it as a parametric surface in R3, if we allow for self-intersections. Of course,
this would fail to be a surface in the sense of Definition 5.10.

Example 5.33. In R3, one can describe the Klein bottle parametrically as

σ : R2 → R3, σ(u, v) = (x(u, v), y(u, v), z(u, v)),
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where

x(u, v) =
[
6+ cos u

2
sin v− sin u

2
sin(2v)

]
cosu,

y(u, v) =
[
6+ cos u

2
sin v− sin u

2
sin(2v)

]
sinu,

z(u, v) = sin u
2

sin v+ cos u
2

sin(2v).

This is graphed in Figure 5.20.
Other representations of the Klein bottle can be found on the Wikipedia page [10].

−8 −6 −4 −2
2

4
6

8

−8
−6

−4
−2

2
4

6
8

−2

−1.5

−1

−0.5

0.5

1

1.5

2

x

y

z

Figure 5.20. The parametric Klein bottle σ from Example 5.33.

Finally, we mention the following modification of the Whitney embedding theorem: if we also
allowed for self-intersections, then any surface can be placed in R3. (This is a special case of
the Whitney immersion theorem.) In other words, if we wished instead to study surfaces with
self-intersections, like we did for curves, then we need only consider such objects as subsets of R3.

5.3. The Tangent Plane. Now that we have formally defined surfaces, our next aim is to study
their geometric properties. Similar to our previous discussions for curves, we are using the term
“geometric property” to refer to some attribute that is possessed by every surface, i.e. a function
mapping every surface to some value. At a less formal level, geometric properties refer to those
that depend only on the geometry (i.e. shape, size, and position) of a surface.

Also, like for curves, we rarely work with a surface directly; rather, we probe for information
about surfaces through more concrete objects—their parametrisations. One example of this is
our definition of tangent planes associated with a parametric surface (see Definition 5.5). It is
then pertinent to ask whether this information is a geometric property of the surface, or merely
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a property of the parametric surface. This is precisely the same question that we faced when
studying curves: is a given property of parametric surfaces independent of parametrisation?

To be more specific, suppose we have a surface S. Assume also that we are interested in some
geometric property P of S, which we probe using parametrisations of S. if we were to measure P
using two different parametrisations σ1 and σ2 of S, then we should obtain the same value. This
is because P is a property of S itself, while σ1 and σ2 are merely local representations of S.

Below, we initiate the study of geometric properties of surfaces by discussing tangent planes. In
the remainder of this section, we discuss some related properties, such as orientation.

5.3.1. Independence of Parametrisation. Before making any formal statements, let us first motivate
our discussion through a simple example involving the sphere S2:

Example 5.34. Consider the sphere S2 (see Definition 5.8) and the point p = (−1, 0, 0) ∈ S2. As
noted in Example 5.25, one parametrisation of S2 that covers p is

σx,− : B0 → R3, σx,−(u, v) = (−
√
1− u2 − v2, u, v).

Also, from Example 5.24, we obtain another (non-injective) parametrisation of S2 containing p:

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v),

Let us compare the tangent planes at p obtained through σx,− and σs.
For σx,−, we first note that p = σx,−(0, 0). Taking partial derivatives yields

∂uσx,−(u, v) =

(
u√

1− u2 − v2
, 1, 0

)
, ∂vσx,−(u, v) =

(
v√

1− u2 − v2
, 0, 1

)
,

∂uσx,−(0, 0) = (0, 1, 0), ∂vσx,−(0, 0) = (0, 0, 1).

Recalling Definition 5.5 for the tangent plane, we see that

Tσx,−(0, 0) = {a · ∂uσx,−(0, 0)|p + b · ∂vσx,−(0, 0)|p | a, b ∈ R}

= {a · (0, 1, 0)|(−1,0,0) + b · (0, 0, 1)|(−1,0,0) | a, b ∈ R}

= {(0, a, b)|(−1,0,0) | a, b ∈ R}.

Similarly, for σs, we have that p = σs(π,
π
2
). From Example 5.24, we have that

∂uσs(u, v) = (− sinu sin v, cosu sin v, 0), ∂vσs(u, v) = (cosu cos v, sinu cos v,− sin v),

∂uσs

(
π,
π

2

)
= (0,−1, 0), ∂vσs

(
π,
π

2

)
= (0, 0,−1).

As a result, we obtain

Tσs

(
π,
π

2

)
= {a · (0,−1, 0)|p + b · (0, 0,−1)|p | a, b ∈ R}

= {(0,−a,−b)|(−1,0,0) | a, b ∈ R}.

Finally, comparing the above two computations, we see that

Tσx,−(0, 0) = Tσs

(
π,
π

2

)
,

that is, the tangent planes at p computed via σx,− and σs are the same.
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Figure 5.21. These figures show the two parametric tangent planes com-
puted in Example 5.34. The left diagram depicts σx,− and Tσx,−(0, 0), while
the right diagram depicts σs and Tσs(π, π2 ).

Example 5.34 provides some initial evidence that the tangent plane at a point p ∈ S2 is in fact
a geometric property of S2. To confirm that this is indeed the case, we will have to check that the
tangent planes match for any point p ∈ S2 and any pair of parametrisations of S2 covering p.

In fact, we will be far more ambitious and show that we can do this for any surface, not just S2:

Theorem 5.4. Let S ⊆ Rn be a surface, and let p ∈ S. Also, let

σ : U→ S, σ̃ : Ũ→ S

be two parametrisations of S (in the sense of Definition 5.11) such that

σ(u0, v0) = σ̃(ũ0, ṽ0) = p, (u0, v0) ∈ U, (ũ0, ṽ0) ∈ Ũ.

(See Figure 5.22 for a graphical depiction of this setting.) Then,

Tσ(u0, v0) = Tσ̃(ũ0, ṽ0),

that is, the tangent planes with respect to σ and σ̃ coincide at p.

Figure 5.22. The setting of Theorem 5.4. This shows two parametrisations
σ and σ̃ of the surface S (in black) which cover a common point p ∈ S.
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Proof. The idea of the proof is similar to the analogous property for tangent lines. First, we note
that we can reduce the domains of σ and σ̃ in a way so that both parametrisations are injective
but still map to p. Note that at the points where the images of σ of σ̃ overlap, we can write

σ(u, v) = σ̃(Φ(u, v)), Φ(u, v) = σ̃−1(σ(u, v)).

Here, Φ can be viewed as the change of variables between (u, v) ∈ U and (ũ, ṽ) ∈ Ũ. (Note
that σ̃−1 makes sense, since σ̃ is assumed to be injective.) Furthermore, since Φ is an R2-valued
function, we can expand Φ in terms of its components:

Φ(u, v) = (ũ(u, v), ṽ(u, v)).

Next, we use the multivariable chain rule to write ∂uσ in terms of partial derivatives of σ̃:

∂uσ(u, v) = ∂u[σ̃(ũ(u, v), ṽ(u, v))]

= ∂ũσ̃(ũ(u, v), ṽ(u, v)) · ∂uũ(u, v) + ∂ṽσ̃(ũ(u, v), ṽ(u, v)) · ∂uṽ(u, v).

Similarly, for ∂vσ, we have

∂vσ(u, v) = ∂ũσ̃(ũ(u, v), ṽ(u, v)) · ∂vũ(u, v) + ∂ṽσ̃(ũ(u, v), ṽ(u, v)) · ∂vṽ(u, v).

We now apply the above formulas at (u, v) = (u0, v0) (corresponding to the point p). Note that

Φ(u0, v0) = (ũ(u0, v0), ṽ(u0, v0)) = (ũ0, ṽ0),

since (ũ0, ṽ0) are the σ̃-coordinates associated with p. Thus, we obtain that

∂uσ(u0, v0) = ∂uũ(u0, v0)∂ũσ̃(ũ0, ṽ0) + ∂uṽ(u0, v0)∂ṽσ̃(ũ0, ṽ0),
∂vσ(u0, v0) = ∂vũ(u0, v0)∂ũσ̃(ũ0, ṽ0) + ∂vṽ(u0, v0)∂ṽσ̃(ũ0, ṽ0).

As a result, by Definition 5.5, we see that

Tσ(u0, v0) = {a · ∂uσ(u0, v0)|σ(u0,v0) + b · ∂vσ(u0, v0)|σ(u0,v0) | a, b ∈ R}

= {a · ∂uσ(u0, v0)|p + b · ∂vσ(u0, v0)|p | a, b ∈ R}

= {[a · ∂uũ(u0, v0) + b · ∂vũ(u0, v0)] · ∂ũσ̃(ũ0, ṽ0)|p
+ [a · ∂uṽ(u0, v0) + b · ∂vṽ(u0, v0)] · ∂ṽσ̃(ũ0, ṽ0)|p | a, b ∈ R}.

Since the quantities

a · ∂uũ(u0, v0) + b · ∂vũ(u0, v0), a · ∂uṽ(u0, v0) + b · ∂vṽ(u0, v0)

are simply real numbers, it follows that

Tσ(u0, v0) ⊆ {ã · ∂ũσ̃(ũ0, ṽ0) + b̃ · ∂ṽσ̃(ũ0, ṽ0) | ã, b̃ ∈ R} = Tσ̃(ũ0, ṽ0).

Finally, by symmetry, we can repeat all of the above work, but with the roles of σ and σ̃ inter-
changed; this results in the opposite subset relation

Tσ̃(ũ0, ṽ0) ⊆ Tσ(u0, v0).

From this, we conclude that Tσ(u0, v0) and Tσ̃(ũ0, ṽ0) are the same, as desired. □
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In light of Theorem 5.4, which states that tangent planes are independent of parametrisation,
we can now make sense of tangent planes of a surface.

Definition 5.12. Given a surface S ⊆ Rn and p ∈ S, we define the tangent plane to S at p by

TpS = Tσ(u0, v0),

where σ : U→ S is any parametrisation of S (in the sense of Definition 5.11), and where

σ(u0, v0) = p, (u0, v0) ∈ U.

Moreover, an element of TpS is called a tangent vector of S at p.

Example 5.35. Recall the cylinder from Example 5.27,

C = {(x, y, z) ∈ R3 | x2 + y2 = 1},

and consider the point p = (0, 1, 5) ∈ C. Let us now find the tangent plane TpC.
From Definition 5.12, we see that we must find a parametrisation of C which covers p. The

simplest way is to take the parametrisation σ from Example 5.22, which satisfies

p = (0, 1, 5) = σ
(π
2
, 5
)

.

Furthermore, we can compute that

∂uσ
(π
2
, 5
)
= (−1, 0, 0), ∂vσ

(π
2
, 5
)
= (0, 0, 1).

As a result, by Definition 5.12 again, we have that

TpC = Tσ

(π
2
, 5
)

=

{
a · ∂uσ

(π
2
, 5
)∣∣∣

p
+ b · ∂vσ

(π
2
, 5
)∣∣∣

p
| a, b ∈ R

}
= {a · (−1, 0, 0)|(0,1,5) + b · (0, 0, 1)|(0,1,5) | a, b ∈ R}.

A plot of C and TpC is found in Figure 5.23.
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Figure 5.23. The cylinder C and the
tangent plane TpC from Example 5.35.
The point p is drawn in green.

We conclude our discussions here by connecting
our results with linear algebra. Suppose again that
we are in the setting of Theorem 5.4 (see also Figure
5.22 for a visual representation).

Now, from the discussion following Definition 5.7,
we have that TpS = Tσ(u0, v0) is a 2-dimensional
vector space. Moreover, the “arrows” ∂uσ(u0, v0)|p
and ∂vσ(u0, v0)|p form a basis for TpS. A similar
argument holds for σ̃ as well, hence ∂ũσ̃(ũ0, ṽ0)|p and
∂ṽσ̃(ũ0, ṽ0)|p is another basis for TpS = Tσ̃(ũ0, ṽ0).

In other words, for any parametrisation (e.g. σ
or σ̃) of S which covers p, we have a basis of the
2-dimensional vector space TpS associated with this
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parametrisation. Furthermore, when we change our parametrisation, say from σ to σ̃, then this is
observed at the level of the tangent plane as a change of basis of TpS.

To restate this more intuitively, we can think of a parametrisation of S as one person’s particular
perspective (or, in physics terms, frame of reference) of S. Thus, even though S is a single
unchanging object, there are (infinitely) many different parametrisations of S, which correspond
to the many different ways one can possibly view S.

In addition, one can also think of a basis of TpS as a particular perspective (or frame of reference)
of this tangent plane. Thus, by fixing any parametrisation, one also selects a particular way of
viewing TpS. When one changes parametrisations, the resulting change of basis of TpS can hence
be interpreted as a linear change of perspective for TpS.
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Figure 5.24. This plot shows S2 and TpS2 from Example 5.36. The basis
vectors of TpS2 with respect to σx,− are drawn in blue, while the basis vectors
of TpS2 with respect to σs are drawn in purple.

Example 5.36. Let us return to the sphere S2. Consider the tangent plane TpS2, where

p =

(
−
1

2
,
1

2
,
1√
2

)
.

Note that p is covered by the parametrisations σx,− and σs (see Examples 5.34), and

p = σx,−

(
1

2
,
1√
2

)
= σs

(
3π

4
,
π

4

)
.
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We can then compute the associated partial derivatives:

∂uσx,−(0, 0) = (1, 1, 0), ∂vσx,−(0, 0) = (
√
2, 0, 1),

∂uσs

(
π,
π

2

)
=

(
−
1

2
,−
1

2
, 0

)
, ∂vσs

(
π,
π

2

)
=

(
−
1

2
,
1

2
,−

1√
2

)
.

Then, the basis of TpS2 associated with σx,− is

{(1, 1, 0)|p, (
√
2, 0, 1)|p},

while the basis of TpS2 associated with σs is{(
−
1

2
,−
1

2
, 0

)∣∣∣∣
p
,

(
−
1

2
,
1

2
,−

1√
2

)∣∣∣∣
p

}
.

These bases are graphically depicted in Figure 5.24.

5.3.2. Normal Vectors. Consider now a surface S ⊆ R3 lying in 3-dimensional space, as well as a
point p ∈ S. Since TpS is a 2-dimensional plane sitting within a 3-dimensional space, then there
is one remaining dimension that is perpendicular to TpS.

It is often useful to pick out a normalised unit vector from this remaining dimension:

Definition 5.13. Let S ⊆ R3 be a surface, and let p ∈ S. The “arrow” N|p from p is said to be a
unit normal to S at p iff N|p is perpendicular to TpS and has unit length (i.e. |N|p| = 1).

Example 5.37. Consider the sphere S2 ⊆ R3 and the point p = (0, 0, 1) ∈ S2. Since p is the
north pole—the “top” of the sphere—the tangent plane TpS2 is simply a copy of the xy-plane on p:

TpS2 = {a · (1, 0, 0)|p + b · (0, 1, 0)|p | a, b ∈ R} = {(a, b, 0)|p | a, b ∈ R}.

Thus, the z-direction is perpendicular to TpS2.
In particular, the unit vectors in this z-direction are (0, 0, 1)|p and (0, 0,−1)|p. Therefore, by

Definition 5.13, both of these are unit normals to S2 at p = (0, 0, 1).
See Figure 5.25 for a visual representation of this setting.
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Figure 5.25. The setting from Exam-
ple 5.37. The point p is drawn in green,
while the unit normals (0, 0,±1)|p to S2
at p are in blue and purple.

We begin with some general observations:

Proposition 5.5. Let S ⊆ R3 be a surface. Then,
there are exactly two unit normals to S at any p ∈ S.

Also, if N|p is one unit normal to S at p ∈ S, then
−N|p is the other unit normal to S at p.

Proof. That there are exactly two unit normals is a
consequence of the following observation: the vectors
that are perpendicular to the tangent plane form a
1-dimensional line, from which there are exactly two
elements with magnitude 1. For the remaining state-
ment, we simply note that if N|p satisfies the condi-
tions of Definition 5.13, then −N|p does as well. □
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Now that we have precisely defined what unit normals are, we can ask the following:

Question 5.4. How do we generally compute unit normals to surfaces?

Like for tangent planes (see Definition 5.12), the idea is to use parametrisations in order to
compute the unit normals. The result is summarised in the following theorem:

Theorem 5.6. Let S ⊆ R3 be a surface. Suppose σ : U→ S is a parametrisation of S, and let

p = σ(u0, v0), (u0, v0) ∈ U.

Then, the unit normals to S at p are precisely given by

±
[
∂uσ(u0, v0)× ∂vσ(u0, v0)
|∂uσ(u0, v0)× ∂vσ(u0, v0)|

]∣∣∣∣
p

.

Proof. Recall that the “arrows” ∂uσ(u0, v0)|p and ∂vσ(u0, v0)|p satisfy

∂uσ(u0, v0)|p, ∂vσ(u0, v0)|p ∈ Tσ(u0, v0) = TpS,

that is, they point in directions tangent to S. Furthermore, since σ is regular by definition, then
∂uσ(u0, v0)|p and ∂vσ(u0, v0)|p point in different directions and hence span Tσ(u0, v0) = TpS.

As a result, by Proposition 3.13, the cross product

∂uσ(u0, v0)|p × ∂vσ(u0, v0)|p = [∂uσ(u0, v0)× ∂vσ(u0, v0)]|p

is nonzero and is perpendicular to both of its factors, and hence to TpS. To obtain the unit normals,
we simply divide the above by its norm and recall Proposition 5.5. □

Example 5.38. Let us return to the sphere S2. Consider a point p = (x0, y0, z0) ∈ S2, with z0 > 0
(i.e. with p lying on the upper hemisphere). Recall that

p = σz,+(x0, y0),

where σz,+ was defined in Example 5.25:

σz,+ : B0 → R3, σz,+(u, v) = (u, v,
√
1− u2 − v2).

Recall also from Example 5.10 that the partial derivatives of σz,+ satisfy

∂uσz,+(u, v) =

(
1, 0,−

u√
1− u2 − v2

)
, ∂vσz,+(u, v) =

(
0, 1,−

v√
1− u2 − v2

)
.

Taking their cross product, we see that

∂uσz,+(u, v)× ∂vσz,+(u, v) =
(

u√
1− u2 − v2

,
v√

1− u2 − v2
, 1

)
.

Moreover, its norm satisfies

|∂uσz,+(u, v)× ∂vσz,+(u, v)| =
√

u2

1− u2 − v2
+

v2

1− u2 − v2
+ 1 =

1√
1− u2 − v2

.

From the above, we then obtain
∂uσz,+(u, v)× ∂vσz,+(u, v)
|∂uσz,+(u, v)× ∂vσz,+(u, v)|

= (u, v,
√
1− u2 − v2) = σz,+(u, v).
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Thus, by Theorem 5.6, the unit normals to S2 at p are given by

±
[
∂uσz,+(x0, y0)× ∂vσz,+(x0, y0)
|∂uσz,+(x0, y0)× ∂vσz,+(x0, y0)|

]∣∣∣∣
p
= ±σz,+(x0, y0)|p = ±p|p.

In particular, the direction of the unit normals is the same as the position of the point where it is
computed. To convince yourself that this is sensible, see the left plot of Figure 5.26.

In particular, at the north pole, p = (0, 0, 1), the unit normals are

±p|p = (0, 0,±1)|(0,0,1),

which matches the expected answer from Example 5.37.

Example 5.39. Let us now approach the sphere S2 using spherical coordinates,

σs : R× (0, π) → S2, σs(u, v) = (cosu sin v, sinu sin v, cos v).

Recall from Example 5.24 that σs is regular, and that

∂uσs(u, v) = (− sinu sin v, cosu sin v, 0),
∂vσs(u, v) = (cosu cos v, sinu cos v,− sin v),

∂uσ(u, v)× ∂vσ(u, v) = (− cosu sin2 v,− sinu sin2 v,− sin v cos v),
|∂uσ(u, v)× ∂vσ(u, v)| = sin v.

Now, given any point p = σs(u0, v0) on the image of σs, we compute
∂uσs(u0, v0)× ∂vσs(u0, v0)
|∂uσs(u0, v0)× ∂vσs(u0, v0)|

= −(cosu0 sin v0, sinu0 sin v0, cos v0) = −p.

By Theorem 5.6, we conclude that the unit normals to S2 at p are given by ∓p|p.
In particular, combining this with Example 5.38, we see, as expected, that when p lies in the

images of both σz,+ and σs, the unit normals computed using σz,+ and σs coincide.

Furthermore, by doing similar calculations with other parametrisations that cover S2, we can
obtain the following: at any point p ∈ S2, the unit normals to S2 at p are precisely ±p|p.
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Figure 5.26. Plots of S2 (left) and cylinder x2+y2 = 1 (right). Some unit
normals of each surface are drawn in blue and purple.
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Observe that in Example 5.38, taking the cross product ∂uσz,+ × ∂vσz,+ selects the unit normal
+p|p, which points outwards from the sphere. On the other hand, the cross product ∂uσs×∂vσs in
Example 5.39 selects the inward-pointing normal −p|p. This is a general phenomenon applicable
to all surfaces and parametrisations; which of the two normals is selected by the cross product in
Theorem 5.6 depends on the particular parametrisation that is used.

Example 5.40. Consider next the cylinder from Example 5.22,

C = {(x, y, z) ∈ R3 | x2 + y2 = 1},

which is covered by the regular parametrisation

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Recall from Example 5.22 that

∂uσ(u, v) = (− sinu, cosu, 0), ∂vσ(u, v) = (0, 0, 1),
∂uσ(u, v)× ∂vσ(u, v) = (cosu, sinu, 0), |∂uσ(u, v)× ∂vσ(u, v)| = 1.

Thus, for any p = σ(u0, v0) ∈ C, the unit normals to C at p are

±
[
∂uσ(u0, v0)× ∂vσ(u0, v0)
|∂uσ(u0, v0)× ∂vσ(u0, v0)|

]∣∣∣∣
p
= ±(cosu0, sinu0, 0)|p.

This setting is drawn in the right plot in Figure 5.26.

Finally, we relate unit normals to another intuitive property of tangent planes—that they are
“two-sided”. Roughly speaking, we can think of a plane as a flat (infinite) piece of paper. Just as
a piece of paper has a “front” and a “back” side, a plane, in an abstract sense, has the same.

More specifically, for a surface S ⊆ R3, we can think of a tangent plane TpS as partitioning the
space R3 into two “halves”. Then, we can view one “side” of TpS as facing one of the halves of R3,
and the other “side” of TpS as facing the other half; see the left picture of Figure 5.27.

A B

S

TpS
A B

S

TpS

Figure 5.27. The left diagram shows the two sides (labelled “A” and “B”)
of a tangent plane TpS. In the right diagram, two unit normals (in blue and
purple) extending from TpS are added; the blue normal represents side “A”,
while the purple normal represents side “B”.
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Another precise way to capture these “sides” of TpS is through unit normals. In particular,
we can simply associate a unit normal N|p with the side of TpS facing the direction that N|p is
pointing. This is demonstrated in the right picture in Figure 5.27.

Now, since we can view TpS as extending from this point p, then we can also view a unit normal
of S at p as choosing a side of S at p. In other words, a surface at each point has two sides; one
of the two sides can be “selected” by choosing one of the two unit normals at p.

Example 5.41. Consider the sphere S2. Recall from Examples 5.38 and 5.39, as well as the
surrounding discussions, that at each p ∈ S2, the unit normals to S2 at p are precisely ±p|p.

Observe that the unit normal p|p points outward from the sphere; see the blue arrows in the left
plot of Figure 5.26. Thus, p|p represents the “outward-facing” side of S2 at p.

Similarly, the other unit normal −p|p points inward from the sphere; see the purple arrows in
the left plot of Figure 5.26. As a result, −p|p represents the “inward-facing” side of S2 at p.

Remark. In fact, even for surfaces in higher dimensions, i.e. S ⊆ Rn, we can still make sense of
its tangent planes being “two-sided”, and hence of S being “two-sided” at a point. However, this
property is trickier to capture mathematically, hence we avoid discussing this here.

5.3.3. Orientation. Consider again a surface S ⊆ R3. We have already discussed how S is “two-
sided” at every p ∈ S, and we noted that a particular side can be represented by a unit normal of
S at p. Observe that the above concerns the local geometry of S, in that it deals only with a small
portion of S. Next, we pose a similar question involving the global geometry of S.

Question 5.5. Is S as a whole two-sided?

The first step is to make Question 5.5 more precise. Since S being two-sided at p is manifested
by the choice of a unit normal at p, then the natural course of action is to associate global two-
sidedness of S with a similarly global choice of unit normals at all points of S. However, this by
itself is not quite enough. In particular, we need to ensure that given any two points p,q ∈ S,
the unit normals of S chosen at p and q “represent the same face of S” (though we have yet to
precisely define what this means). These considerations motivate the following definition:

Definition 5.14. A surface S ⊆ R3 is orientable iff one can choose a unit normal N|p of S at
every p ∈ S in a way such that the direction of N|p varies smoothly with p.

In the case that S is orientable, then a smoothly varying choice of unit normals N|p for each
p ∈ S, as described above, is called an orientation of S.

Some explanations regarding Definition 5.14 are in order. First, as mentioned before, the choice
of unit normals corresponds to a choice of one side of S at each of its points. In addition, for the
assumption that the normals N|p vary smoothly with p, the intuition is that this prevents us from
“suddenly jumping” from one side of S to the other as one considers different points. Thus, when
S is orientable, we are allowed to make a consistent choice of one side of S everywhere.

In other words, we can interpret S being orientable as S being globally two-sided. Furthermore,
an orientation of S—defined as a choice of smoothly varying unit normals—corresponds to a choice
of one of the two sides of S (whenever two such sides exist).
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Example 5.42. Observe that the sphere S2 is orientable. To see this, we first recall (from Examples
5.38 and 5.39) that at each p ∈ S2, the unit normals of S2 at p are precisely ±p|p. Then, one
smooth choice of unit normals on S2 is to associate each p ∈ S2 with +p|p.

Moreover, recall that the normals p|p point outward from the sphere; see the left plot in Figure
5.28. Thus, the orientation given by the +p|p’s represents the outward-facing side of S2.

On the other hand, had we chosen the −p|p’s instead (see the right plot in Figure 5.28), then
we would have captured the opposite orientation, representing the inward-facing side of S2.
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Figure 5.28. The left diagram shows S2 with the orientation representing
its outward-facing side; some of the associated unit normals are drawn in
blue. The right diagram shows the opposite inward-facing orientation of S2,
with some associated unit normals drawn in purple.

Next, we consider an example of a non-orientable surface: the Möbius strip. One simple way to
view the Möbius strip is through the gluing construction we previous applied to the Klein bottle
(see Figure 5.19). More specificaly, we begin with a rectangle, and we glue two opposite edges
together “in reverse order”; this is demonstrated in Figure 5.29. To try this yourself, take a thin
strip of paper, twist it halfway, and then glue the two ends together.

Figure 5.29. A demonstration of how the Möbius strip can be realised by
gluing together two opposite edges of a rectangle.

Intuitively, the Möbius strip is not orientable since it has only one side rather than two. Indeed,
although any small portion of the strip is two sided, at the global scale, the two sides blend into
each other whenever one goes a full revolution around the strip.
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Example 5.43. One explicit parametrisation of the Möbius strip is as follows:

σ : (−1, 1)× R → R3, σ(u, v) =
((
1−

u

2
sin v
2

)
cos v,

(
1−

u

2
sin v
2

)
sin v, u

2
cos v

2

)
.

See Figure 5.30 for a plot of σ.
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Figure 5.30. The left plot contains the graph of the parametric Möbius
strip σ from Example 5.43. The right plot demonstrates why the Möbius
strip fails to be orientable—in particular, any choice of unit normals along
the strip must fail to be continuous at some point.

We can also give a heuristic argument in the context of Definition 5.14 for why the Möbius strip
fails to be orientable. Consider the strip M in the right picture in Figure 5.30, and fix, for example,
the outward-pointing unit normal N|p (in blue) at the point p ∈M (in green). Let us now try to
construct from N|p a smooth choice of unit normals along all of M.

As we traverse along the red curve on M, the corresponding unit normals are determined by the
requirement that they vary smoothly; these normals are drawn in purple. The problem arises once
we travel a full lap around M along the red curve. In particular, once we return to p, the unit
normal that we are forced to have is the opposite of the one we began with. Thus, our attempt to
construct a smooth global choice of unit normals must necessarily fail.

The above heuristic argument can be converted to a formal proof using the parametric repre-
sentation σ from Example 5.43 and the unit normals constructed using Theorem 5.6.

Remark. One can also define orientability and orientation for general surfaces S ⊆ Rn. However,
this is trickier to capture mathematically, hence we do not discuss this in this module.

For example, the Klein bottle (see, for instance, Example 5.32) fails to be orientable.
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6. The Geometry of Surfaces

Thus far, we have given a precise definition of surfaces. Moreover, we have defined the tangent
plane to a surface S ⊆ Rn at any point p ∈ S, representing the directions and speeds one can go
along S at p. In this chapter, we apply these concepts to explore the geometry of surfaces.

In particular, at the end of this chapter (and these notes), we discuss some landmark results in
surface geometry, in particular the theorema egregium and the Gauss-Bonnet theorem.

6.1. The First Fundamental Form. We begin with the question of “size”: how large is a surface
S, or part of S? One critical ingredient for measuring size is the ability to determine the lengths
of vectors. In addition, in 2-dimensions, we now have infinitely many directions to contend with.
This leads to another question: given two directions, what is the angle between them?

Recall that the issues of measuring length and angle are fundamentally tied to the dot product.
Since our concern lies within a surface S, this motivates the following definition:

Definition 6.1. Given a surface S ⊆ Rn and a point p ∈ S, we define the first fundamental form
of S at p to be the dot product on the tangent plane TpS.

To put it simply, the first fundamental form at p provides us with the means to measure lengths
and angles in S, at least at p. The main objective of this section, then, is to show how this
information can be used to compute the “sizes”, or areas, of surfaces.

Remark. The term “first fundamental form” is mostly historical. While it is often used in intro-
ductory courses in surface geometry, it is rarely used in more modern contexts. In contemporary
differential geometry, the term most often used is induced metric, or metric; see [1].

6.1.1. Parametric Representations. While the definition of the first fundamental form is simple
enough, our aim is to use it to compute properties of surfaces. Since we usually do not work with
a surface S directly, but rather through parametrisations of S, it will be useful for us to express
the first fundamental form in terms of such a parametrisation σ : U→ S.

Given this σ, let us also fix a point p = σ(u0, v0), for some (u0, v0) ∈ U, as well as two tangent
vectors w|p, z|p ∈ TpS. Our objective, then, is to express the dot product

(6.1) w|p · z|p = w · z

in terms of σ. For this, let us also recall that the tangent vectors ∂uσ(u0, v0)|p and ∂vσ(u0, v0)|p
form a basis of TpS. As a result, we can express w|p and z|p as

w|p = wu · ∂uσ(u0, v0)|p +wv · ∂vσ(u0, v0)|p,
z|p = zu · ∂uσ(u0, v0)|p + zv · ∂vσ(u0, v0)|p.

In other words, wu and wv are the components of w|p with respect to the above basis obtained
from σ. The same statement can also be made for zu, zv, and z|p.

Combining the above, we can now expand (6.1) as

w|p · z|p = [wu · ∂uσ(u0, v0)|p +wv · ∂vσ(u0, v0)|p] · [zu · ∂uσ(u0, v0)|p + zv · ∂vσ(u0, v0)|p]
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= wuzu[∂uσ(u0, v0) · ∂uσ(u0, v0)] +wuzv[∂uσ(u0, v0) · ∂vσ(u0, v0)]

+wvzu[∂vσ(u0, v0) · ∂uσ(u0, v0)] +wvzv[∂vσ(u0, v0) · ∂vσ(u0, v0)],

where the quantities inside the brackets denote dot products of partial derivatives of σ. Rearranging
a bit, we can then write the above as a matrix product,

w|p · z|p =
[
wu wv

] [∂uσ(u0, v0) · ∂uσ(u0, v0) ∂uσ(u0, v0) · ∂vσ(u0, v0)
∂vσ(u0, v0) · ∂uσ(u0, v0) ∂vσ(u0, v0) · ∂vσ(u0, v0)

][
zu

zv

]
.

In other words, (6.1) is expressed as a product of matrices obtained from the components wu, wv,
zu, zv of w|p and z|p, as well as another matrix comprised of partial derivatives of σ. In particular,
this latter matrix contains precisely the contents of the dot product on TpS.

The preceding derivation inspires the following definition:

Definition 6.2. Assume the setting of Definition 6.1, and let σ : U → S be a parametrisation of
S. We define the first fundamental form of S with respect to σ to be the matrix-valued function

FIσ(u, v) =

[
∂uσ(u, v) · ∂uσ(u, v) ∂uσ(u, v) · ∂vσ(u, v)
∂vσ(u, v) · ∂uσ(u, v) ∂vσ(u, v) · ∂vσ(u, v)

]
, (u, v) ∈ U.

In other words, in order to compute the dot product on TpS from the point of view of a parametri-
sation σ of S, the main step is to calculate the quantity FIσ.

Example 6.1. Recall the cylinder C from Example 5.22, for which a parametrisation is given by

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Let us compute the first fundamental form of C with respect to σ.
First, recall that in Example 5.22, we also computed

∂uσ(u, v) = (− sinu, cosu, 0), ∂vσ(u, v) = (0, 0, 1).

Taking dot products, we then see that

∂uσ(u, v) · ∂uσ(u, v) = 1, ∂uσ(u, v) · ∂vσ(u, v) = 0,
∂vσ(u, v) · ∂uσ(u, v) = 0, ∂vσ(u, v) · ∂vσ(u, v) = 1.

Thus, by Definition 6.2, the first fundamental form of C with respect to σ is

FIσ(u, v) =

[
∂uσ(u, v) · ∂uσ(u, v) ∂uσ(u, v) · ∂vσ(u, v)
∂vσ(u, v) · ∂uσ(u, v) ∂vσ(u, v) · ∂vσ(u, v)

]
=

[
1 0

0 1

]
,

that is, the identity matrix at every point.
In particular, the above implies that both ∂uσ and ∂vσ have unit length everywhere, and that

∂uσ and ∂vσ are everywhere perpendicular to each other.

Example 6.2. Next, consider the sphere S2, with the (regular) parametrisation

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v),
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from Example 5.24. Recall that

∂uσs(u, v) = (− sinu sin v, cosu sin v, 0),
∂vσs(u, v) = (cosu cos v, sinu cos v,− sin v).

Taking dot products, we obtain

∂uσs(u, v) · ∂uσs(u, v) = sin2 v, ∂uσs(u, v) · ∂vσs(u, v) = 0,
∂vσs(u, v) · ∂uσs(u, v) = 0, ∂vσs(u, v) · ∂vσs(u, v) = 1.

Recalling Definition 6.2 then yields

FIσs(u, v) =

[
sin2 v 0

0 1

]
.

In particular, the above ∂vσs always has unit length, while the length of ∂uσs varies with the
v-coordinate. Furthermore, ∂uσs and ∂vσs are everywhere perpendicular to each other.

Example 6.3. Consider next the paraboloid

S = {(x, y, x2 + y2) | x, y ∈ R},

which can also be described as the image of the parametric surface

σ : R2 → R3, σ(u, v) = (u, v, u2 + v2).

Note that its partial derivatives are given by

∂uσ(u, v) = (1, 0, 2u), ∂vσ(u, v) = (0, 1, 2v).

Taking cross products, we see that

|∂uσ(u, v)× ∂vσ(u, v)| = |(−2u,−2v, 1)| =
√
1+ 4u2 + 4v2.

Since the above is always nonzero, Theorem 5.3 implies that σ is regular and hence is a parametri-
sation of S. Next, taking dot products, we obtain that

∂uσ(u, v) · ∂uσ(u, v) = 1+ 4u2, ∂uσ(u, v) · ∂vσ(u, v) = 4uv,

∂vσ(u, v) · ∂uσ(u, v) = 4uv, ∂vσ(u, v) · ∂vσ(u, v) = 1+ 4v2.

Thus, the first fundamental form with respect to σ is

FIσ(u, v) =

[
1+ 4u2 4uv

4uv 1+ 4v2

]
.

Finally, let us return to a general surface S ⊆ Rn. Suppose now that we have two parametrisa-
tions σ : U→ S and σ̃ : Ũ→ S of S. Suppose in addition that

p = σ(u0, v0) = σ̃(ũ0, ṽ0),

as indicated in Figure 6.1 below. We can then ask the following:

Question 6.1. How are the matrices FIσ and FIσ̃ related to each other?
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Figure 6.1. A reproduction of Figure 5.22.

Here, we briefly sketch the answer to Question 6.1. As in the proof of Theorem 5.4, we consider
the change of variables between (u, v) ∈ U and (ũ, ṽ) ∈ Ũ:

(ũ(u, v), ṽ(u, v)) = Φ(u, v) = σ̃−1(σ(u, v)).

Then, using the (multivariable) chain rule, we can derive (see the proof of Theorem 5.4)[
∂uσ

∂vσ

]∣∣∣∣∣
(u0,v0)

= Jσ,σ̃(u0, v0)
T

[
∂ũσ̃

∂ṽσ̃

]∣∣∣∣∣
(ũ0,ṽ0)

, Jσ,σ̃(u0, v0) =

[
∂uũ ∂vũ

∂uṽ ∂vṽ

]∣∣∣∣∣
(u0,v0)

,

where the “T” denotes the transpose of a matrix.
Substituting this into Definition 6.2 and applying another extensive computation yields

FσI (u0, v0) =

[
∂uσ · ∂uσ ∂uσ · ∂vσ
∂vσ · ∂uσ ∂vσ · ∂vσ

]∣∣∣∣∣
(u0,v0)

= Jσ,σ̃(u0, v0)
T

[
∂ũσ̃ · ∂ũσ̃ ∂ũσ̃ · ∂ṽσ̃
∂ṽσ̃ · ∂ũσ̃ ∂ṽσ̃ · ∂ṽσ̃

]∣∣∣∣∣
(ũ0,ṽ0)

Jσ,σ̃(u0, v0).

Thus, we conclude that at p, the matrices FIσ(u0, v0) and FIσ̃(ũ0, ṽ0) are related by the formula

(6.2) FσI (u0, v0) = Jσ,σ̃(u0, v0)
TFIσ̃(ũ0, ṽ0)Jσ,σ̃(u0, v0).

Remark. Observe that the matrix Jσ,σ̃ is precisely the Jacobian, from multivariable calculus, asso-
ciated with the change of variables (u, v) ↔ (ũ, ṽ). In particular, recall that this Jacobian is an
important quantity in the change of variables formula for double integrals.

6.1.2. Surface Area. The next task is to connect the first fundamental form to the question of
measuring the “size” of a surface. For curves, this meant computing its arc length. For surfaces,
the corresponding question would be to compute the surface area.

Recall that to compute the arc length of a curve, we approximated the curve as line segments
joining chosen sample points along the curve. Measuring the lengths of these line segments yields
an approximation of the arc length of the curve. By taking more sample points along the curve,
and hence a larger number of line segments, the approximate length becomes closer to the actual
length. Finally, the arc length is obtained by taking a “limit” as the number of line segments
approaches infinity. A graphical demonstration was given in Figure 2.15.
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Now, in the context of surfaces, the idea is similar; we approximate the surface by “tiling” it
using parallelograms, for which we already know how to compute the area. (If you do not know
or remember this, a brief summary is given in the following page.) Taking the total areas of the
parallelograms yields an approximation of the surface area, which can then be improved by refining
the tiling and increasing the number of parallelograms. Finally, taking a “limit” as the number of
such parallelograms tends toward infinity results in an integral formula for the surface area.

To be more specific, let us fix a surface S, as well as an injective parametrisation σ : U→ S. A
“tiling” of (a portion of) S can then be achieved using σ. For this, we partition its domain U into
a rectangular grid, with each rectangle having length ∆u and height ∆v. The parametrisation σ
then maps each of these rectangles to a “curved rectangle” on S; see Figure 6.2.

Figure 6.2. This shows how a surface S can be “tiled” using a parametri-
sation σ. One splits U is into rectangles and then maps them through σ.

In particular, to measure the surface area of the image σ(U) of σ, we must find and sum up the
areas of all the “curved rectangles” R comprising σ(U):

A(σ(U)) =
∑

Curved rectangles R in σ(U)

A(R).

Of course, we generally cannot measure the area of a “curved rectangle” R exactly, just like we
cannot find the exact area of S. However, we can approximate the area of R by replacing it with
a parallelogram. In particular, the four corners of R are given by

σ(u0, v0), σ(u0 + ∆u, v0), σ(u0, v0 + ∆v), σ(u0 + ∆u, v0 + ∆v).

Thus, we can approximate R by the parallelgram PR with sides given by the vectors

a|σ(u0,v0) = [σ(u0 + ∆u, v0) − σ(u0, v0)]|σ(u0,v0),
b|σ(u0,v0) = [σ(u0, v0 + ∆v) − σ(u0, v0)]|σ(u0,v0).

This process is shown in the left drawing of Figure 6.3.
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R
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b

PR

a

b h

θ

Figure 6.3. The left diagram is a crude drawing of how a curved rectangle
R is approximated by a parallelogram PR. The boundary of R is drawn
in red, while the vectors a and b defining PR are drawn in green and blue,
respectively. The right diagram describes the setup for computing the area
of PR in the proof of Proposition 6.1.

To approximate the area of R, we determine the area of PR:

Proposition 6.1. The area of the parallelogram PR defined above is

A(PR) =
√

(a · a)(b · b) − (a · b)2.

When n = 3, that is, the surface is embedded in 3-dimensional space, we also have

A(PR) = |a × b|.

Proof. Let θ denote the angle between the “arrows” a|σ(u0,v0) and b|σ(u0,v0). If we take b|σ(u0,v0) to
represent the base of PR, then the corresponding height of PR, indicated in purple in the right
drawing in Figure 6.3, has length h = |a| sin θ. As a result, we obtain

A(PR) = |b|h = |a||b| sin θ.

When n = 3, Proposition 3.13 immediately implies, as desired,

A(PR) = |a × b|.

In general, we expand further, while recalling Proposition 3.4:

[A(PR)]
2 = |a|2|b|2 sin2 θ

= |a|2|b|2 − |a|2|b|2 cos2 θ

= (a · a)(b · b) − (a · b).

This proves both identities in the statement of the proposition. □

We can now use Proposition 6.1 to approximate the area of σ(U). Defining

a∗ =
a
∆u

=
σ(u0 + ∆u, v0) − σ(u0, v0)

∆u
,

b∗ =
b
∆v

=
σ(u0, v0 + ∆v) − σ(u0, v0)

∆v
,
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we then sum the areas of all the PR’s:

A(σ(U)) ≈
∑

Curved rectangles R

A(PR)

=
∑
R

√
(a · a)(b · b) − (a · b)2

=
∑
R

∆u∆v
√

(a∗ · a∗)(b∗ · b∗) − (a∗ · b∗)2.

Like in the case of curves, the above approximation can be refined by taking a smaller rectangular
grid in U, i.e. by decreasing ∆u and ∆v. To generate the actual area of σ(U), we need an “infinitely
good” approximation, that is, we take ∆u,∆v↘ 0. In this case, we have that

a∗ → ∂uσ(u0, v0), b∗ → ∂vσ(u0, v0).

Moreover, the above summation becomes an integral. (Again, we omit the discussion of why this
limit holds formally, as this is beyond the scope of this module.)

Combining all the above, we (at least informally) see that

A(R) = ‘‘ lim
∆u,∆v↘0 "

∑
R

∆u∆v
√

(a∗ · a∗)(b∗ · b∗) − (a∗ · b∗)2

=

∫∫
U

√
(∂uσ · ∂uσ)(∂vσ · ∂vσ) − (∂uσ · ∂vσ)2|(u,v)dudv

=

∫∫
U

√
det FσI (u, v)dudv.

This leads us to the following definition:

Definition 6.3. Let S ⊆ Rn be a surface, and let σ : U→ S be an injective parametrisation of S.
We then define the surface area of the portion σ(U) of S to be

A(σ(U)) =

∫∫
U

√
det FσI (u, v)dudv.

Moreover, if we also perform the above summation and limit arguments using the second identity
in Proposition 6.1, then we obtain the following area formula for surfaces in R3:

Theorem 6.2. Assume the setting of Definition 6.3, and suppose also that n = 3. Then,

A(σ(U)) =

∫∫
U

|∂uσ(u, v)× ∂vσ(u, v)|dudv.

Proof. Using the second identity in Proposition 6.1 instead, we see that

A(σ(U)) ≈
∑
R

|a × b| =
∑
R

∆u∆v|a∗ × b∗|.

The result again follows by taking the limits ∆u,∆v↘ 0. □

Example 6.4. Fix a “height” h > 0, and consider the finite cylinder

Ch = {(x, y, z) ∈ R3 | x2 + y2 = 1, 0 < z < h}.

(This can be shown to be a surface.) We now compute the surface area of Ch.
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Consider the following parametrisation of Ch:

σ : (0, 2π)× (0, h) → Ch, σ(u, v) = (cosu, sinu, v).

By examining the graph of σ, we can see that the image of σ is all of Ch except for a vertical line;
see the left plot in Figure 6.4. For this σ, we can then compute

∂uσ(u, v) = (− sinu, cosu, 0), ∂vσ(u, v) = (0, 0, 1),

and it follows from Definition 6.2 that (the computation is identical to that of Example 6.1)

FIσ(u, v) =

[
1 0

0 1

]
.

Now, let I denote the image of σ. Then, by Definition 6.3, its area is

A(I) =
∫∫

(0,2π)×(0,h)

√
det FIσ(u, v)dudv

=

∫ 2π
0

du

∫h
0

dv

= 2πh,

where we applied Fubini’s theorem from multivariable calculus to split the double integral into
iterated single integrals. Moreover, recall that I is all of Ch except for a 1-dimensional vertical
line, which has area 0. (We take this fact for granted here, as formally demonstrating this is
unfortunately beyond the scope of this module.) Consequently, the area of Ch is

A(Ch) = A(I) = 2πh.

−1 −0.5
0.5 1

−1

1

h

x

y

z

σ

−1 −0.5
0.5 1

−1

1

−1

1

x

y

z

σs,z

Figure 6.4. The left plot shows the image of the parametrisation σ from
Example 6.4, while the right plot shows the image of σs from Example 6.5.

Next, you have probably had to learn earlier in your education that the surface area of a sphere
of radius R is 4πR2. Below, we show how this formula is derived when R = 1. (Moreover, the
computations here can be easily adapted to spheres with any radius.)

Example 6.5. We now compute the surface area of S2. For this, we consider the parametrisation

σs,z : (0, 2π)× (0, π) → R3, σs,z(u, v) = (cosu sin v, sinu sin v, cos v),
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introduced in Example 5.26. In particular, Example 5.26 showed that σs,z is regular and injective,
and σs,z covers all of S2 except for a closed arc; see the right plot in Figure 6.4.

From computations in (5.24), we see that

|∂uσs,z(u, v)× ∂vσs,z(u, v)| = sin v.

Then, letting I denote the image of σs,z, we see from Theorem 6.2 that

A(I) =
∫∫

(0,2π)×(0,π)

|∂uσs,z(u, v)× ∂vσs,z(u, v)|dudv

=

∫ 2π
0

du

∫π
0

sin v dv

= 2π

∫π
0

sin v dv

= 4π.

Since S2 differs from I only by a one-dimensional set, which has zero area, we conclude that

A(S2) = A(I) = 4π.

This result can also be obtained using Definition 6.3. The computations in Example 6.2 imply

FIσs,z(u, v) =

[
sin2 v 0

0 1

]
, det FIσs,z = sin2 v.

Thus, applying Definition 6.3 yields

A(S2) = A(I) =
∫∫

(0,2π)×(0,π)

√
sin2 v dudv =

∫ 2π
0

du

∫π
0

sin v dv = 4π.

Note now that Definition 6.3 only defined the area of subsets of S which are the image of a
single injective parametrisation of S. Furthermore, in Examples 6.4 and 6.5, the whole surface S
only differed from the image of an injective parametrisation by a one-dimensional subset that has
zero area. Thus, in practice, Definition 6.3 was sufficient to compute the full surface area in those
examples. However, this may not necessarily be the case for other surfaces.

Question 6.2. For a general surface S ⊆ Rn, how do we compute the surface area of all of S?

In full generality, the issue is that Smay not be covered (or almost covered) by a single parametri-
sation. The idea, then, is that we have to take several different parametrisations of S which, when
combined, cover all of S. For each of these parametrisations, we measure the surface area of
its image. The total surface area of S can then be recovered by summing all the areas of the
parametrisations. This process is encapsulated in the following informal statement:

Let σi : Ui → S, where 1 ≤ i ≤M, be parametrisations of S such that (i) the images σi(Ui)
are pairwise disjoint, and (ii) the union of all the images σi(Ui) is all of S, except possibly
a subset with zero area. Then, the total surface area of S can be defined as

A(S) =

M∑
i=1

A(σi(Ui)).
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Unfortunately, a fully formal description of the above process lies a bit beyond the scope of this
module. Therefore, for all the examples we will consider within this module, the surface area will
computable from just a single injective parametrisation.

6.1.3. Surface Integrals. Recall that in our study of curves, we generalised our formula for the arc
length of curves to that of weighted arc lengths; this was the definition of path integrals. Similarly,
we can extend our notion of surface area, given in Definition 6.3, to that of a weighted surface area.

Definition 6.4. Let S ⊆ Rn be a surface, let σ : U→ S be an injective parametrisation of S, and
let G : S→ R. We then define the surface integral of G over σ(U) to be∫∫

σ(U)

GdA =

∫∫
U

G(σ(u, v))
√

det FσI (u, v)dudv.

Furthermore, the surface area of G over all of S is defined as∫∫
S

GdA =

M∑
i=1

∫∫
σi(Ui)

GdA,

where σi : Ui → S, 1 ≤ i ≤M, are parametrisations of S whose images are pairwise disjoint and
cover all of S, except possibly a subset with zero area.

Remark. Like for the surface area in the preceding discussion, we will only consider in these notes
surface integrals which are computable using only a single parametrisation.

Remark. When n = 3, the surface area could also be computed using the formula∫∫
σ(U)

GdA =

∫∫
U

G(σ(u, v))|∂uσ(u, v)× ∂vσ(u, v)|dudv.

Remark. Like for path integrals, the surface area is a special case of the surface integral:

A(S) =

∫∫
S

1 dA.

First, we note that the only difference between Definitions 6.3 and 6.4 is the presence of an
additional function G, which represents the weight associated with our weighted surface area. In
particular, for each p ∈ S, the value G(p) represents the weight applied at p.

Observe that this weight G is inserted into the surface integral in the same manner that as was
previously done in the definition of path integrals (see Definition 2.13). The only subtlety here is
regarding where the weight G is applied. The main point to keep in mind is that the value√

det FσI (u, v)dudv

represents the area of an infinitesimal parallelogram at the point σ(u, v) ∈ S. Therefore, the
appropriate weight to associate with this value in the integrand is G(σ(u, v)), that is, at σ(u, v).

For a physics example, suppose we have an electrically charged unit sphere, which we model by
S2. Suppose also that the charge is distributed unevenly along the sphere. We let G(p) denote
the charge density at any point p ∈ S2, which can vary as p changes. (G(p) can also be either
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positive or negative, depending on the sign of the charge.) Then, to compute total charge of the
sphere, we would integrate the charge density G along S2:

Total charge =

∫∫
S2
GdA.

In other words, we can view the total charge abstractly as a weighted area of S2.

Example 6.6. Let us return to the sphere S2, and let us compute∫∫
S2
z2 dA.

In particular, the weight G is given by

G(x, y, z) = z2.

Like in Example 6.5, we compute the integral using the parametrisation

σs,z : (0, 2π)× (0, π) → R3, σs,z(u, v) = (cosu sin v, sinu sin v, cos v),

which we recall satisfies √
det FIσs,z = sin v.

Thus, letting I denote the image of σs,z, we obtain from Definition 6.4 that∫∫
S2
z2 dA =

∫∫
I
GdA

=

∫∫
(0,2π)×(0,π)

G(cosu sin v, sinu sin v, cos v) sin v dudv

=

∫ 2π
0

du

∫π
0

cos2 v sin v dv

= 2π

[
−
1

3
cos3 v

]π
0

=
4π

3
.

Example 6.7. Consider the surface S defined as the image of the parametric surface

σ : (0, 1)× (0, 1) → R3, σ(u, v) = (u, v, u2 + v2).

Clearly, σ is injective. It is also regular, since

|∂uσ(u, v)× ∂vσ(u, v)| = |(1, 0, 2u)× (0, 1, 2v)| =
√
1+ 4u2 + 4v2,

which is everywhere strictly positive.
Let us now compute the surface integral∫∫

S

√
1+ 2x2 + 2y2 + 2z dA.

Here, the integrand is the function defined

G(x, y, z) =
√
1+ 2x2 + 2y2 + 2z.
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Since S is the image of σ, then Definition 6.4 gives∫∫
S

√
1+ 2x2 + 2y2 + z dA =

∫∫
(0,1)×(0,1)

G(σ(u, v))|∂uσ(u, v)× ∂vσ(u, v)|dudv

=

∫ 1
0

∫ 1
0

G(u, v, u2 + v2)
√
1+ 4u2 + 4v2 dudv

=

∫ 1
0

∫ 1
0

√
1+ 2u2 + 2v2 + 2(u2 + v2)

√
1+ 4u2 + 4v2 dvdu

=

∫ 1
0

∫ 1
0

(1+ 4u2 + 4v2)dvdu.

Evaluating the above double integral results in the answer:∫∫
S

√
1+ 2x2 + 2y2 + z dA = 1+ 4

∫ 1
0

u2du+ 4

∫ 1
0

v2dv

= 1+
4

3
+
4

3

=
11

3
.

There is still one important unfinished business in our discussion of surface integrals, and by
extension, surface area. More specifically, surface integrals over a surface S were defined using any
choice of injective parametrisations of S. However, we have not addressed whether the integral is
independent of the parametrisations that were used to compute it. In other words, we have not
determined whether surface integrals (and also the surface area) are geometric properties of the
surface S. The subsequent theorem ties up this final loose end:

Theorem 6.3. Let S ⊆ Rn be a surface, and let G : S → R. Moreover, suppose σ : U → S and
σ̃ : Ũ→ S are injective parametrisations of S, with σ(U) = σ̃(Ũ). Then,∫∫

U

G(σ(u, v))
√

det FIσ(u, v)dudv =
∫∫
Ũ

G(σ̃(ũ, ṽ))
√

det FIσ̃(ũ, ṽ)dũdṽ.

Sketch of proof. By the formula (6.2) relating FIσ and FIσ̃, we obtain that√
det FIσ(u, v) =

√
det Jσ,σ̃(u, v)T det FIσ̃(ũ, ṽ) det Jσ,σ̃(u, v)

=
√

det Jσ,σ̃(u, v) det FIσ̃(ũ, ṽ) det Jσ,σ̃(u, v)

= det Jσ,σ̃(u, v)
√

det FIσ̃(ũ, ṽ),

where (ũ, ṽ) = σ̃−1(σ(u, v)). Then, by the change of variables formula for double integrals,∫∫
U

G(σ(u, v))
√

det FIσ(u, v)dudv =
∫∫
U

G(σ(u, v))
√

det FIσ̃(ũ, ṽ) det Jσ,σ̃(u, v)dudv

=

∫∫
Ũ

G(σ̃(ũ, ṽ))
√

det FIσ̃(ũ, ṽ)dũdṽ.

(In particular, det Jσ,σ̃(u, v) is precisely the factor needed in the change of variables formula.) □
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6.2. Curvature. The previous section explored how one would measure the “size”, or area, of a
surface. Now, we study another fundamental aspect of geometry: the “shape” of a surface.

Figure 6.5. From left to right, a plane, paraboloid, and hyperboloid. Note
that the plane is “flat”, while the paraboloid and hyperboloid are “curved”.

Consider a plane, a paraboloid, and a hyperboloid, as in Figure 6.5. Intuitively, we know that the
plane is “flat”, as it is not “curving” at any of its points. In contrast, our intuitions indicate that
both the paraboloid and hyperboloid are “curved”, in fact at all of their points. As we previously
did for curves, we now ask how to make these intuitive ideas mathematically precise:

Question 6.3. How do we make the notion of “curvature” of a surface mathematically precise?
Moreover, how would we quantify and compute this “curvature”?

The first observation is that Question 6.3 is considerably more complex than the corresponding
question for curves, since there are many more directions to consider along a 2-dimensional surface.
In particular, a surface can curve differently at various points and in various directions. Thus, a
considerable amount of information is required to fully describe how a surface is curved.

For instance, the paraboloid “curves in the same way” (i.e. “upward”, or away from its lower
face) at each of its points and in all directions. However, the paraboloid can be “more curved” in
some directions than others. In contrast, the hyperboloid bends differently in different directions;
if one fixes a face of this hyperboloid, then some directions will curve toward this face, while others
will curve away from it. In the upcoming discussions, we will discuss how to precisely characterise
this information, and as a result address Question 6.3.

Remark. While one can make sense of curvature for surfaces in any dimension, for simplicity, we
will only consider surfaces in R3 here. In particular, in R3, we can take advantage of the notion of
unit normals to a surface, which are relatively simple to describe and compute.

6.2.1. The Second Fundamental Form. Let us return to the “flat” plane and “curved” paraboloid
from Figure 6.3, and let us see we how we can capture this geometric difference. As mentioned
in the preceding remark, one way to approach this is to consider their unit normals, a notion we
previously discussed in Definition 5.13 and Theorem 5.5. Figure 6.6 depicts a sampling of what
the unit normals look like for both the plane and the paraboloid.

Example 6.8. Let a, b, c, d ∈ R such that (a, b, c) ̸= (0, 0, 0). In other words, the set

P = {(x, y, z) ∈ R3 | ax+ by+ cz = d},
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describes a general plane. We claim that the unit normal to P at any p ∈ P is

N|p = ± (a, b, c)√
a2 + b2 + c2

∣∣∣∣
p

.

To see this, let us first assume that c ̸= 0, so that P is covered by a single parametrisation

σz : R2 → R3, σz(u, v) =

(
u, v,

1

c
(d− au− bv)

)
.

(Essentially, we set u and v to be x and y, respectively.) A direct computation shows that

∂uσz(u, v)× ∂vσz(u, v) =
(
1, 0,−

a

c

)
×
(
0, 1,−

b

c

)
=

(
a

c
,
b

c
, 1

)
,

and applying Theorem 5.5 proves the claim:

N|σ(u,v) = ± ∂uσz(u, v)× ∂vσz(u, v)
|∂uσz(u, v)× ∂vσz(u, v)|

∣∣∣∣
σ(u,v)

= ± (a, b, c)√
a2 + b2 + c2

∣∣∣∣
σ(u,v)

.

Finally, the computations in the remaining cases b ̸= 0 or a ̸= 0 are analogous to the above.

Figure 6.6. The plots depict the plane and parabola from Figure 6.5, with
some unit normals drawn on each surface. In particular, the unit normals of
the plane all have the same direction, while the unit normals of the parabola
change directions depending on the position.

In particular, Example 6.8 shows that for any plane, its unit normals have the same direction
everywhere. However, this property fails to hold for the “curved” parabola. Because of its curva-
ture, the unit normals to the parabola point in different directions at different points; see the right
diagram in Figure 6.6. The same could be said for the hyperboloid in Figure 6.5.

One way to interpret the above is to contend that it is the curvature of a surface that causes
its unit normals to change directions as one moves along the surface. This lead us to the main
idea for describing surface curvature: the curvature of a surface can be characterised by how the
directions of its unit normals change with the position. In other words, to capture the curvature
of a surface, we should measure the derivative of its unit normals.

Although this sounds simple in theory, this derivative contains many pieces of information:
(1) One can differentiate the unit normals in many different directions along S.
(2) The unit normal is a vector-valued function with three components.
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Thus, to adequately characterise the curvature, we will need to unpack all of this information. As
usual, to convert the above into digestible quantities, we work with parametrisations.

To pursue this more precisely, let us consider a surface S ⊆ R3. In addition, we fix a parametri-
sation σ : U→ S of S. By Theorem 5.6, we can use σ to make a particular choice of unit normals:

Nσ(u, v) = +
∂uσ(u, v)× ∂vσ(u, v)
|∂uσ(u, v)× ∂vσ(u, v)|

.

As a result, our aim is now to look at derivatives of Nσ, in various directions along S.

S
γ(t) = σ(u(t), v(t))

Figure 6.7. This diagram demonstrates how the derivative of Nσ is mea-
sured. One chooses a curve γ along S (drawn in red), and differentiates Nσ

along γ. Some samples of Nσ are drawn as arrows in the diagram.

To capture a direction along S with which to differentiate Nσ, we consider an arbitrary curve

γ(t) = σ(u(t), v(t))

in the image of σ. In particular, the values u(t) and v(t) represent the coordinates of γ(t), with
respect to the parametrisation σ. The derivative of Nσ in the γ-direction is then given by

(6.3) d

dt
[Nσ(u(t), v(t))].

This setup is illustrated in Figure 6.7.
Now, although (6.3) is a vector in R3, the information that it carries is in fact constrained to S:

Proposition 6.4. Assuming the above setup, we have that

(6.4) d

dt
[Nσ(u(t), v(t))]

∣∣∣∣
σ(u(t),v(t))

∈ Tσ(u(t), v(t)) = Tσ(u(t),v(t))S,

that is, d
dt
[Nσ(u(t), v(t))] is everywhere tangent to S.

Proof. Since Nσ(u(t), v(t)) has unit (and constant) length, then by Proposition 3.5,

0 =
1

2

d

dt
[|Nσ(u(t), v(t))|

2] = Nσ(u(t), v(t)) ·
d

dt
[Nσ(u(t), v(t))].
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The above equality implies that d
dt
[Nσ(u(t), v(t))] has no component in the Nσ-direction, i.e. the

direction normal to S. In other words, d
dt
[Nσ(u(t), v(t))] must be tangent to S and hence must lie

in the corresponding tangent plane; this is precisely (6.4). □

Now, Proposition 6.4 establishes that the derivatives of Nσ lie on the tangent planes of S, which
are spanned by the tangent vectors ∂uσ(u(t), v(t))|σ(u(t),v(t)) and ∂vσ(u(t), v(t))|σ(u(t),v(t)). Thus, to
capture all the information in the derivative of Nσ, we need only compute the dot products

d

dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t)),

d

dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t)),

that is, the magnitudes of the u and v-components of d
dt
[Nσ(u(t), v(t))].

Now, since Nσ(u(t), v(t)) is perpendicular to ∂uσ(u(t), v(t)) (the former is normal to S, while
the latter is tangent to S), then applying the product and chain rules yields

d

dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t)) =

d

dt
[Nσ(u(t), v(t)) · ∂uσ(u(t), v(t))]

−Nσ(u(t), v(t)) ·
d

dt
[∂uσ(u(t), v(t))]

= −[Nσ(u(t), v(t)) · ∂2uuσ(u(t), v(t))]u ′(t)

− [Nσ(u(t), v(t)) · ∂2uvσ(u(t), v(t))]v ′(t).

A similar computation also yields
d

dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t)) = −[Nσ(u(t), v(t)) · ∂2vuσ(u(t), v(t))]u ′(t)

− [Nσ(u(t), v(t)) · ∂2vvσ(u(t), v(t))]v ′(t).

The above two equations can be concisely summarised in matrix form:

(6.5)
[
d
dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t))

d
dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t))

]
= −

[
∂uuσ ·Nσ ∂uvσ ·Nσ

∂vuσ ·Nσ ∂vvσ ·Nσ

]∣∣∣∣∣
(u(t),v(t))

[
u ′(t)

v ′(t)

]
.

This above identity (6.5) motivates the following definition:

Definition 6.5. Consider a surface S ⊆ R3, and a parametrisation σ : U→ S of S. We define the
second fundamental form of S with respect to σ to be the matrix-valued function

FIIσ (u, v) =

[
∂uuσ(u, v) ·Nσ(u, v) ∂uvσ(u, v) ·Nσ(u, v)

∂vuσ(u, v) ·Nσ(u, v) ∂vvσ(u, v) ·Nσ(u, v)

]
, (u, v) ∈ U,

where Nσ is the unit normal to S given by

Nσ(u, v) = +
∂uσ(u, v)× ∂vσ(u, v)
|∂uσ(u, v)× ∂vσ(u, v)|

.

Recall that u ′(t) and v ′(t) in (6.5) represent the components of γ ′(t), where the curve γ repre-
sented the direction in which we differentiated Nσ. Consequently, (6.5) and Definition 6.5 indicate
that if we know the second fundamental form FIIσ , then we can recover all components of the de-
rivative of Nσ. Before we accomplish this fully, and hence complete our answer of Question 6.3,
we first present some simple examples of Definition 6.5 in action:
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Example 6.9. Consider the cylinder from Examples 5.5 and 5.22,

C = {(x, y, z) ∈ R3 | x2 + y2 = 1},

which is fully covered by the parametrisation

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Recall from Example 5.40 that

Nσ(u, v) =
∂uσ(u, v)× ∂vσ(u, v)
|∂uσ(u, v)× ∂vσ(u, v)|

= (cosu, sinu, 0).

Furthermore, computing second derivatives of σ yields

∂uuσ(u, v) = (− cosu,− sinu, 0), ∂uvσ(u, v) = (0, 0, 0),
∂vuσ(u, v) = (0, 0, 0), ∂vvσ(u, v) = (0, 0, 0).

Thus, taking dot products and applying Definition 6.5, we have for any (u, v) ∈ R2 that

FIIσ (u, v) =

[
∂uuσ(u, v) ·Nσ(u, v) ∂uvσ(u, v) ·Nσ(u, v)

∂vuσ(u, v) ·Nσ(u, v) ∂vvσ(u, v) ·Nσ(u, v)

]
=

[
−1 0

0 0

]
.

Example 6.10. Next, consider the sphere S2, with the spherical coordinate parametrisation

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v).

Recall from Example 5.39 that

Nσ(u, v) =
∂uσs(u, v)× ∂vσs(u, v)
|∂uσs(u, v)× ∂vσs(u, v)|

= −(cosu sin v, sinu sin v, cos v).

Furthermore, taking second partial derivatives, we see that

∂uuσ(u, v) = (− cosu sin v,− sinu sin v, 0),
∂uvσ(u, v) = (− sinu cos v, cosu cos v, 0),
∂vuσ(u, v) = (− sinu cos v, cosu cos v, 0),
∂vvσ(u, v) = (− cosu sin v,− sinu sin v,− cos v).

As a result, by Definition 6.5, we obtain

FIIσ (u, v) =

[
∂uuσ ·Nσ ∂uvσ ·Nσ

∂vuσ ·Nσ ∂vvσ ·Nσ

]∣∣∣∣∣
(u,v)

=

[
sin2 v 0

0 1

]
.

6.2.2. The Weingarten Matrix. Let us return to the setting of the preceding discussion, with

S ⊆ R3, σ : U→ S, γ(t) = σ(u(t), v(t))

as before. In the preceding discussion, we had derived the identity (6.5):[
d
dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t))

d
dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t))

]
= −FIIσ (u(t), v(t))

[
u ′(t)

v ′(t)

]
.

We now use this formula to complete our description of the derivative of Nσ.
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Recall that Proposition 6.4 implied that the derivative
d

dt
[Nσ(u(t), v(t))]

is everywhere tangent to S. Since the tangent vectors

∂uσ(u(t), v(t))|σ(u(t),v(t)), ∂vσ(u(t), v(t))|σ(u(t),v(t))

form a basis of Tσ(u(t),v(t))S, then we can write the above as a linear combination,
d

dt
[Nσ(u(t), v(t))]|σ(u(t),v(t)) = a(t) · ∂uσ(u(t), v(t))|σ(u(t),v(t))(6.6)

+ b(t) · ∂vσ(u(t), v(t))|σ(u(t),v(t)).

In particular, a(t) and b(t) represent the components of the left-hand side of (6.6), with respect
to the above basis of Tσ(u(t),v(t))S. Our aim now is to find a(t) and b(t).

Taking dot products of (6.6) with the partial derivatives of σ, we obtain
d

dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t)) = a(t)[∂uσ(u(t), v(t)) · ∂uσ(u(t), v(t))]

+ b(t)[∂vσ(u(t), v(t)) · ∂uσ(u(t), v(t))],
d

dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t)) = a(t)[∂uσ(u(t), v(t)) · ∂vσ(u(t), v(t))]

+ b(t)[∂vσ(u(t), v(t)) · ∂vσ(u(t), v(t))].

Compacting into matrix form, the above now becomes[
d
dt
[Nσ(u(t), v(t))] · ∂uσ(u(t), v(t))

d
dt
[Nσ(u(t), v(t))] · ∂vσ(u(t), v(t))

]
=

[
∂uσ · ∂uσ ∂uσ · ∂vσ
∂vσ · ∂uσ ∂vσ · ∂vσ

]∣∣∣∣∣
(u(t),v(t))

[
a(t)

b(t)

]
(6.7)

= FIσ(u(t), v(t))

[
a(t)

b(t)

]
.

Finally, combining (6.5) and (6.7) results in the identity

FIσ(u(t), v(t))

[
a(t)

b(t)

]
= −FIIσ (u(t), v(t))

[
u ′(t)

v ′(t)

]
,

and rearranging the above yields

(6.8)
[
a(t)

b(t)

]
= −FIσ(u(t), v(t))

−1FIIσ (u(t), v(t))

[
u ′(t)

v ′(t)

]
.

Let us now interpret (6.8). First, on the right-hand side, the quantities u ′(t) and v ′(t) represent
the components of γ ′(t), with respect to the σ-coordinates. Thus, u ′(t) and v ′(t) represent the
direction in which we are differentiating Nσ. Now, on the left-hand side, the quantities a(t) and
b(t) represent the components of the derivative of Nσ, in this γ-direction.

Consequently, the matrix −FIσ(u(t), v(t))
−1FIIσ (u(t), v(t)) maps the direction in which we choose

to differentiate Nσ with the value of the resulting derivative. In particular, this matrix contains all
the information about the derivative of the unit normals of S (and hence, the curvature of S).
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These considerations motivate the following definition:

Definition 6.6. Consider a surface S ⊆ R3, and a parametrisation σ : U→ S of S. We define the
Weingarten matrix of S with respect to σ to be the matrix-valued function

Wσ(u, v) = F
I
σ(u, v)

−1FIIσ (u, v), (u, v) ∈ U.

We now compute the Weingarten matrix of some basic surfaces and parametrisations:

Example 6.11. Let us return to the cylinder C from Example 6.9, with parametrisation

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Recall from Examples 6.1 and 6.9 that

FIσ(u, v) =

[
1 0

0 1

]
, FIIσ (u, v) =

[
−1 0

0 0

]
.

Then, by Definition 6.6, the Weingarten matrix with respect to σ is

Wσ(u, v) = F
I
σ(u, v)

−1FIIσ (u, v) =

[
1 0

0 1

][
−1 0

0 0

]
=

[
−1 0

0 0

]
.

Example 6.12. Next, for the sphere S2, with parametrisation

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v).

we have from Examples 6.2 and 6.10 that

FIσs(u, v) =

[
sin2 v 0

0 1

]
, FIIσs(u, v) =

[
sin2 v 0

0 1

]
.

Thus, by Definition 6.6, we have that

Wσs(u, v) =

[
sin2 v 0

0 1

]−1 [
sin2 v 0

0 1

]
=

[
1 0

0 1

]
.

Example 6.13. Consider now the paraboloid described as the image of the parametric surface

σ : R2 → R3, σ(u, v) = (u, v, u2 + v2).

Recall from Example 6.3 that its first fundamental form with respect to σ is

FIσ(u, v) =

[
1+ 4u2 4uv

4uv 1+ 4v2

]
.

Moreover, the inverse of FIσ(u, v) is given by

FIσ(u, v)
−1 =

1

det FIσ(u, v)

[
1+ 4v2 −4uv

−4uv 1+ 4u2

]
=

1

1+ 4u2 + 4v2

[
1+ 4v2 −4uv

−4uv 1+ 4u2

]
.

Next, to compute the second fundamental form, we first note that

Nσ(u, v) =
∂uσ(u, v)× ∂v(u, v)

|∂uσ(u, v)× ∂vσ(u, v)|
=

1√
1+ 4u2 + 4v2

(−2u,−2v, 1),
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while the second derivatives of σ satisfy

∂uuσ(u, v) = (0, 0, 2), ∂uvσ(u, v) = (0, 0, 0),
∂vuσ(u, v) = (0, 0, 0), ∂vvσ(u, v) = (0, 0, 2).

Thus, by Definition 6.5,

FIIσ (u, v) =
1√

1+ 4u2 + 4v2

[
2 0

0 2

]
.

Finally, combining all the above with Definition 6.6, we obtain

Wσ(u, v) =
1

1+ 4u2 + 4v2

[
1+ 4v2 −4uv

−4uv 1+ 4u2

]
· 1√
1+ 4u2 + 4v2

[
2 0

0 2

]

=
2

(1+ 4u2 + 4v2)
3
2

[
1+ 4v2 −4uv

−4uv 1+ 4u2

]
.

Finally, let us make sense of the Weingarten matrix, which we recall mapped the direction in
which we differentiated Nσ to the resulting derivative of Nσ, from a more conceptual point of view.
Consider the following definition, which we will only treat here in an informal manner:

Definition 6.7. Given a surface S ⊆ R3 and p ∈ S, we define the shape operator of S at p to be
the linear transformation S : TpS → TpS, which maps a direction z|p ∈ TpS at p along S to the
derivative of the unit normal in the z-direction at p (which lies in TpS by Proposition 6.4).

Remark. That the shape operator is linear is a basic fact about directional derivatives from calculus
and analysis. However, we will not discuss this formally here.

Now, by choosing a parametrisation σ of S that contains p, we in effect fixed a basis of TpS. Then,
the above discussions, in particular (6.8), show that −Wσ is precisely the matrix representation of
the shape operator S from Definition 6.7, with respect to this basis of TpS.

6.2.3. Principal Curvatures. The preceding discussion consolidated all the information contained
in the derivative of the unit normal into the Weingarten matrix of Definition 6.6. Here, we extract
additional scalar quantities from the Weingarten matrix, representing aspects of curvature.

First, we recall the following definitions from linear algebra:

Definition 6.8. Let A be a 2× 2 real-valued matrix. Then, λ ∈ R is an eigenvalue of A iff there
exists a nonzero v ∈ R2 such that, when represented as a column vector,

Av = λv.

Furthermore, we refer to v as a corresponding eigenvector of A.

In particular, we consider eigenvalues and eigenvectors of the Weingarten matrix:

Definition 6.9. Assume the setting of Definition 6.6, and fix in addition p = σ(u, v) ∈ S.
• The (two) eigenvalues of Wσ(u, v) are called principal curvatures of S at p (with respect to
σ). These will be denoted in the notes as κ1|p and κ2|p.
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• Eigenvectors of Wσ(u, v) are called principal directions of S at p (with respect to σ).

Example 6.14. Consider the cylinder C from Example 6.11, with parametrisation

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Recall also from Example 6.11 that the Weingarten matrix with respect to σ is

Wσ(u, v) =

[
−1 0

0 0

]
.

Since Wσ(u, v) is diagonal, its eigenvalues are simply its diagonal elements: −1 and 0. Thus,
by Definition 6.9, the principal curvatures of C (with respect to σ) at any p ∈ C are

κ1|p = −1, κ2|p = 0.

Furthermore, note that the column vectors

v1 =
[
1

0

]
, v2 =

[
0

1

]
satisfy the relations

Wσ(u, v)v1 =
[
−1

0

]
= −1 · v1, Wσ(u, v)v2 =

[
0

0

]
= 0 · v2.

Thus, v1, v2 represent principal directions of C (with respect to σ) at any p ∈ C.

Let us now explore what the principal curvatures and directions mean. Throughout, we will
assume the setting of Definition 6.9. In other words, we let S ⊆ R3 be a surface, and we let
σ : U→ S be a parametrisation of S. In addition, we fix a point p = σ(u, v) ∈ S.

Given any v = (v1, v2) ∈ R2, we can think of it as a direction along S at p:

v 7→ v1 · ∂uσ(u, v)|p + v2 · ∂vσ(u, v)|p = TpS.

Moreover, let w = (w1, w2) ∈ R2 be such that

w =Wσ(u, v)v,

where v and w are treated as column vectors. Then, w can also be viewed as a direction along S
at p, representing the derivative −dvNσ of the unit normal Nσ in the (−v)-direction at p.

In general, w = −dvNσ will not point in the same direction as v. However, the exceptions to
this are precisely along the principal directions, i.e. the eigenvectors of Wσ(u, v). In particular, if

Wσ(u, v)v = w = κv,

that is, κ is a principal curvature of S at p and v a corresponding principal direction, then:
• When κ > 0, then along the v-direction, the unit normal Nσ is precisely bending away

from this v-direction. Thus, S is bending toward Nσ in the v-direction from p.
• When κ < 0, then along the v-direction, the unit normal Nσ is precisely bending toward

this v-direction. Thus, S is bending away from Nσ in the v-direction from p.
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• When κ = 0, then S is not bending at p along the v-direction.
See Figure 6.8 below for a visual demonstration of each case.

S
Nσ
p

S
Nσ
p

S
Nσ
p

Figure 6.8. The plots show parts of three surfaces S. On each plot, the
purple arrow denotes a unit normal Nσ(u, v) on the surface, while the red
curve indicates a principal direction along S through p = σ(u, v). The
left, middle, and right plots demonstrate cases in which the corresponding
(σ-)principal curvature is positive, negative, and zero, respectively.

Let us now the consider some basic examples of surfaces:

Example 6.15. Let us return to the setting from Example 6.14. Recall from Example 6.9 that

Nσ(u, v) = (cosu, sinu, 0),

which always points outward from C. Using the notations from Example 6.14:
• The principal direction v1 corresponds to the direction ∂uσ(u, v)|p, that is, along the circles

within C where the z-coordinate is constant. Along these curves, one is bending away from
the unit normal Nσ. This direction corresponds to the negative principal curvature κ1 = −1.

• The principal direction v2 corresponds to the direction ∂vσ(u, v)|p, along the vertical lines
of C. Along these lines, C is not bending, corresponding to the principal curvature κ2 = 0.

See the left plot of Figure 6.9 for a graphical representation of the above.

Example 6.16. For the sphere S2, with parametrisation

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v).

we recall from Examples 6.10 and 6.12 that

Nσs(u, v) = −(cosu sin v, sinu sin v, cos v), Wσs(u, v) =

[
1 0

0 1

]
.

In particular, note that the unit normal Nσs always points inward toward the origin.
Again, for any point p = σs(u, v) ∈ S2, since Wσs(u, v) is diagonal, then its eigenvalues, and

hence the principal curvatures at p, are simply its diagonal elements:

κ1|p = κ2|p = 1.

Furthermore, since Wσs(u, v) is the identity matrix, it follows that any nonzero v ∈ R2 is a
principal direction at p, corresponding to the above principal curvatures.
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More intuitively, note that in any direction along S2 from p, the sphere is bending inward toward
(the inward-pointing) Nσ. This reflects the fact that both principal curvatures are positive. See the
right plot of Figure 6.9 for a graphical representation.
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Figure 6.9. The left plot contains the cylinder C from Example 6.15; the
red curve represents the principal direction associated with κ1 = −1, while
the blue curve represents the principal direction from κ2 = 0. The right
plot contains the sphere S2 from Example 6.16; note that all directions bend
toward the inward-pointing unit normal (in cyan).

Example 6.17. Next, consider the one-sheeted hyperboloid,

H = {(x, y, z) ∈ R3 | x2 + y2 − z2 = 1},

a surface which can be covered by a single parametrisation

σ : R2 → R3, σ(u, v) = (cosh v cosu, cosh v sinu, sinh v).

A graph of σ is given in Figure 6.10.
With respect to σ, one can then compute that

Nσ =
1√

cosh2 v+ sinh2 v
(cosh v cosu, cosh v sinu,− sinh v),

which always points outward from H. Furthermore, another computation yields

Wσ(u, v) =

[
−(cosh2 v+ sinh2 v)− 1

2 0

0 (cosh2 v+ sinh2 v)− 3
2

]

=

[
−(1+ 2 sinh2 v)− 1

2 0

0 (1+ 2 sinh2 v)− 3
2

]
.

Thus, at any p = σ(u, v) ∈ H, the principal curvatures are given by

κ1|p = −(1+ 2 sin2 v)−
1
2 , κ2|p = (1+ 2 sin2 v)−

3
2 .

In particular, at each point of H, there is one positive and one negative principal curvature.
To see this more intuitively, note that:
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• In the “vertical” direction, the hyperboloid is bending toward the outward-pointing unit
normal Nσ, which captures the positive principal curvature κ2.

• In the “horizontal” direction, the hyperboloid is bending away from the outward-pointing
unit normal Nσ, reflecting the negative principal curvature κ1.

This is demonstrated graphically in Figure 6.10.

−2 −1
1

2

−2

−1

1

2

−2

−1

1

2

x

y

z

H
Nσ

Figure 6.10. The hyperboloid H discussed
in Example 6.17. The red and blue curves
represent the principal directions associated
with κ1 < 0 and κ2 > 0, respectively.

Observe the principal curvatures were always
obtained using the Weingarten matrix, with re-
spect to a chosen parametrisation σ. In order
for these quantities to be true geometric prop-
erties of the surface S, they must also be inde-
pendent of the chosen σ. The following theorem
shows that this is “almost true”, with the only
deficiency being an a sign ambiguity:

Theorem 6.5. Let S ⊆ R3 be a surface, and let
p ∈ S. Then, the principal curvatures κ1|p and
κ2|p at p are independent of the parametrisation
σ of S used to define them, with the exception of
a possible change in sign of both κ1|p and κ2|p.

Rather than proving Theorem 6.5 formally,
which requires a bit of background that is be-
yond the scope of this module, let us instead
give an informal explanation.

The first main idea comes from the discus-
sion below Definition 6.7, i.e. that Wσ is the matrix associated with the shape operator, a linear
transformation of the tangent space TpS, with respect to the basis of TpS obtained from σ. A
change of parametrisation, say from σ to σ̃, results in a change of basis of TpS. Therefore, the ma-
trices Wσ(u, v) and Wσ̃(ũ, ṽ), where σ(u, v) = p = σ̃(ũ, ṽ), are related through this same change
of basis. Now, recall from linear algebra that the eigenvalues of a matrix are preserved by such
changes of bases. Thus, we expect that the principal curvatures of S at p should not change.

To see where the sign ambiguity comes from, we recall that for all our computations and intu-
itions, we fixed the unit normal Nσ generated from our parametrisation σ. It is possible that a
different parametrisation σ̃ would select the opposite normal. In this case, the second fundamental
form, the Weingarten matrix, and hence the principal curvatures would all have the opposite sign,
corresponding to this flip in sign of the unit normal.

A more intuitive way to see this change in sign is the following: if a surface is bending toward
one unit normal, then it is bending away from the opposite unit normal, and vice versa. Thus, the
signs of the principal curvatures depend crucially on which of the two unit normals to S is selected.

Example 6.18. If we choose a different parametrsiation of S2, say,

σ∗ : (0, π)× R → R3, σ∗(u, v) = σs(v, u) = (cos v sinu, sin v sinu, cosu),
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then the corresponding unit normals Nσ∗(u, v) will point outward. Moreover, we can compute

Wσ∗(u, v) =

[
−1 0

0 −1

]
, κ1|p = κ2|p = −1,

for any point p = σ∗(u, v). Intuitively speaking, since we have now selected the outward-pointing
unit normal to S2, the sphere now bends in every direction away from this unit normal. This
explains the negative principal curvatures that were obtained with respect to σ∗.

Remark. Finally, one can also view the principal curvatures κ1|p and κ2|p as the “maximum”
and “minimum” amounts of curvature at p. Moreover, the corresponding principal directions are
those along which the “maximum” and “minimum” curvatures are achieved. For brevity, we omit
describing in these notes the precise sense that the above statements hold.

6.2.4. Mean and Gauss Curvatures. Next, we consider some additional geometric quantities that
can be defined from the principal curvatures of Definition 6.9.

Definition 6.10. Assume the setting of Definition 6.9. In particular, let p = σ(u, v) ∈ S, and let
κ1|p and κ2|p be the principal curvatures of S at p, with respect to σ.

• The mean curvature of S at p (with respect to σ) is defined

H|p =
1

2
(κ1|p + κ2|p).

• The Gauss curvature of S at p is defined

K|p = κ1|p · κ2|p.

We first apply Definition 6.10 to some elementary examples:

Example 6.19. Consider the cylinder C from Example 6.14, with parametrisation

σ : R2 → R3, σ(u, v) = (cosu, sinu, v).

Using the computations from Example 6.14, we obtain for any p ∈ C that

H|p =
1

2
(κ1|p + κ2|p) =

1

2
(−1+ 0) = −

1

2
,

K|p = κ1|p · κ2|p = −1 · 0 = 0.

(Here, the mean curvature is defined with respect to σ.)

Example 6.20. For the sphere S2, with parametrisation

σs : R× (0, π) → R3, σs(u, v) = (cosu sin v, sinu sin v, cos v),

we can apply the computations from Example 6.16 to obtain, for any p = σs(u, v) ∈ S2,

H|p =
1

2
(κ1|p + κ2|p) = 1, K|p = κ1|p · κ2|p = 1.

Example 6.21. Next, consider the hyperboloid H from Example 6.17, with parametrisation

σ : R2 → R3, σ(u, v) = (cosh v cosu, cosh v sinu, sinh v).
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From the computations in Example 6.17, we obtain for any p = σ(u, v) ∈ H that

H|p =
1

2
[−(1+ 2 sinh2 v)−

1
2 + (1+ 2 sinh2 v)−

3
2 ] = −

sinh2 v
(1+ 2 sinh2 v)− 3

2

,

K|p = −(1+ 2 sinh2 v)−
1
2 (1+ 2 sinh2 v)−

3
2 = −(1+ 2 sinh2 v)−2.

Now, since Theorem 6.5 implies that the principal curvatures are independent of parametrisation
except for a sign ambiguity, the same then holds for the mean curvature. On the other hand,
observe that when the principal curvatures κ1|p and κ2|p are replaced by −κ1|p and −κ2|p, the
Gauss curvature—i.e. the product of the principal curvatures—does not change. As a result, the
Gauss curvature is fully independent of the chosen parametrisation.

These statements are more precisely summarised in the following theorem:

Theorem 6.6. Let S ⊆ R3 be a surface, and let p ∈ S.
• The mean curvature H|p is a geometric property of S, except for a sign ambiguity.
• The Gauss curvature K|p is a geometric property of S.

S2

Nσ
H
Nσ

C
Nσ

Figure 6.11. The left, middle, and right plots show surfaces with positive,
negative, and zero Gauss curvature, respectively, at the point indicated in
green. The red and blue curves indicate principal directions; these bend in
the same way in the left plot, but in opposite ways in the right plot.

Let us look a bit closer at how the sign of the Gauss curvature can be interpreted. Suppose first
that K|p > 0. Then, the corresponding principal curvatures κ1|p and κ2|p (with respect to any
parametrisation σ covering p) must have the same sign. As a result, S must bend in the same way
along any direction from p—either toward or away from the chosen unit normal at p.

One example of this is the sphere S2 (see Examples 6.16 and 6.20). Indeed, one can observe that
S2 is, along any direction, always bending toward the inward-pointing unit normal.

Remark. Note that whether the surface bends toward or away from the chosen unit normal is
irrelevant, as this can be reversed by choosing the opposite unit normal.

On the other hand, if K|p < 0, then the principal curvatures κ1|p and κ2|p must have opposite
signs. This implies that S must bend one way along some directions, and the other way along
other directions. An example of this is the hyperboloid H from Examples 6.17 and 6.21. Here,
one bends toward the outward-pointing unit normal in the “vertical” directions, and away from
the outward-pointing unit normal in the “horizontal” directions.
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Finally, when K|p = 0, then one of the principal curvatures must vanish. In this case, there must
be some (principal) direction along which S is not bending at p. One simple case of this is the
cylinder C from Examples 6.14 and 6.19; indeed, recall that C does not bend along the z-direction.

All three cases described above are depicted in Figure 6.11.
Yet another application of the mean and Gauss curvatures is that they can often be easier to

compute than the principal curvatures. In the examples we have considered so far, the Weingarten
matrices have been diagonal, so the principal curvatures could be easily obtained by simply reading
off the diagonal elements. On the other hand, if Wσ(u, v) fails to be diagonal, then one would
need to go through the process of diagonalising Wσ(u, v), as one learned in linear algebra.

In contrast, the following theorem shows that one can employ some linear algebraic “tricks” in
order to compute the mean and Gauss curvatures without first diagonalising Wσ(u, v).

Definition 6.11. Given a 2× 2 real-valued matrix,

A =

[
a b

c d

]
,

we define the trace of A to be the sum of its diagonal elements:

trA = a+ d.

Theorem 6.7. Let S ⊆ R3 be a surface, and let σ : U→ S be a parametrisation of S. In addition,
we fix p = σ(u, v) ∈ S. Then, the mean (with respect to σ) and Gauss curvatures of S at p satisfy

H|p =
1

2
trWσ(u, v), K|p = detWσ(u, v).

Proof. By diagonalising Wσ(u, v) (that is, by changing to a basis of eigenvectors of Wσ(u, v)), then
Wσ(u, v) correspondingly transforms to the diagonal matrix

D =

[
κ1|p 0

0 κ2|p

]
.

Furthermore, note that
H|p =

1

2
trD, K|p = detD.

Now, standard linear algebra results state that both the trace and the determinant of a matrix
remain unchanged after a change of basis transformation. Consequently, Wσ(u, v) and D have the
same trace and determinant, and our desired formulas follow. □

Furthermore, one can use the mean and Gauss curvatures to recover the principal curvatures,
circumventing the matrix diagonalisation process altogether:

Theorem 6.8. Assume the setting of Theorem 6.7. Then,

κ1|p, κ2|p = H|p ±
√

(H|p)2 −K|p.

where the principal and mean curvatures at p are defined with respect to σ.
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Proof. This is proved via some clever algebraic tricks. First, by Definition 6.10, we have that

2H|p = κ1|p + κ2|p, K|p = κ1|p · κ2|p.

From this, we can compute

(κ2|p − κ1|p)
2 = (κ2|p + κ1|p)

2 − 4κ1|p · κ2|p = 4(H|p)
2 − 4K|p.

As a result,

κ1|p, κ2|p =
1

2
(κ2|p + κ1|p)±

1

2
(κ2|p − κ1|p)

= H|p ± 1

2

√
4(H|p)2 − 4K|p

= H|p ±
√

(H|p)2 −K|p. □

Example 6.22. Consider the paraboloid P described as the image of the parametric surface

σ : R2 → R3, σ(u, v) = (u, v, u2 + v2).

Recall from Example 6.13 that

Wσ(u, v) =
2

(1+ 4u2 + 4v2)
3
2

[
1+ 4v2 −4uv

−4uv 1+ 4u2

]
.

Now, fix a point p = σ(u, v) ∈ P. By Theorem 6.7, we can compute

H|p =
1

2
trWσ(u, v) =

2+ 4u2 + 4v2

(1+ 4u2 + 4v2)
3
2

,

K|p = detWσ(u, v) =
4

(1+ 4u2 + 4v2)2
.

Then, by applying Theorem 6.8, we recover the principal curvatures (with respect to σ):

κ1|p =
2

(1+ 4u2 + 4v2)
1
2

, κ2|p =
2

(1+ 4u2 + 4v2)
3
2

.

6.3. Some Landmark Theorems. We conclude these notes by discussing two landmark theo-
rems in the geometry of surfaces: the theorema egregium and the Gauss–Bonnet theorem. Both
results involve the Gauss curvature and are closely connected to the notion of intrinsic geometry.
As a result, we begin this section with an informal discussion on the intrinsic geometry of surfaces.

6.3.1. Notes on Intrinsic Geometry. Recall from the very beginning of these notes, in Chapter
1, that the intrinsic geometry of a surface refers to geometric properties “of the surface itself”,
regardless of how it is embedded in some larger space. A basic example is to consider the spheres

C1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},(6.9)

C2 = {(x, y, z) ∈ R3 | (x− 1)2 + (y− 1)2 + (z− 1)2 = 1},
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both of which are spheres of unit radius; see Figure 6.12. C1 and C2 are different surfaces from an
extrinsic point of view, since they are situated at different points in 3-dimensional space. However,
C1 and C2 can also be considered “the same” in an intrinsic sense, as both are unit spheres.

As was mentioned before, one thought experiment for informally exploring this notion of intrinsic
properties was to imagine a bug living on a surface, without any awareness of the larger space in
which the surface is lying. In the case of the spheres in (6.9), such a bug living on C1 would have
exactly the same experience as another bug living on C2. Without any knowledge of the ambient
space R3 in which the spheres lie, the bug would not be able to distinguish between C1 and C2,
lending credence to the idea that C1 and C2 have the same intrinsic geometry.

On the other hand, consider another sphere of radius 2 (see again Figure 6.12):

(6.10) C3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 4}.

Might C3 be considered intrinsically different from C1 and C2? Resorting to our thought experiment,
we see that a bug living on the larger C3 would have to crawl further in any direction before
returning to its starting point than a bug living on C1. Therefore, in contrast to the preceding
situation, our hypothetical bug would be able to tell C1 and C3 apart.
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Figure 6.12. The left diagram contains two unit spheres C1 and C2 from
(6.9), situated about different points. The right diagram contains the sphere
C3 from (6.10), which has a larger radius. Here, C1 and C2 are “intrinsically
the same”, while C3 is “intrinsically different” from C1 and C2.

As before, we have neither the space nor the technical background here to formally make sense
of intrinsic geometry. However, like we did in our discussion of curves in Section 3.4, let us try to
be a bit more precise about our bug situation by adopting the following rules:

• The bug is aware of its velocity, that is, it has knowledge of (a) which direction along the
surface it is going, and (b) how fast it is going in that direction.

• In contrast to curves, there are now many more directions along a surface for the bug to
crawl. Here, our hypothetical bug knows when, and how much, it is changing directions.

• Again, the bug is allowed to wander along the surface for all of eternity. Moreover, the bug
has excellent memory and can recall where it has been and how it has moved in the past.
In particular, it knows whether it returns to a point it has previously visited.
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While the above points are informal, let us see if we can connect them to the formal concepts
we have learned in the past two chapters. First, recall that for a surface S ⊆ Rn and a point
p ∈ S, the velocities along S at p—the directions and speeds that one could go along S at p—are
represented by the tangent vectors. Since the intrinsic bug is aware of these velocities, we would
expect these tangent vectors to be intrinsic. Moreover, the tangent plane TpS, which is simply the
set of all tangent vectors at p, would also be considered intrinsic by this line of reasoning.

Now, you may (and should) find this suspicious, since TpS is defined as a plane lying Rn (see
Definition 5.6) or as a set of “arrows” in Rn (see Definition 5.5), both of which depend on the
ambient space Rn. Thus, this suggests that the tangent plane ought to be extrinsic rather than
intrinsic. However, it turns out that one can in fact make sense of tangent vectors and tangent
planes of S in a way that is independent of the ambient space. (This is one of the first, and also
most confusing, definitions that one would learn in an advanced differential geometry module; to
keep things relatively simple, we will not discuss this definition in these notes.) This establishes
both tangent planes and vectors as intrinsic properties of surfaces.

Next, the bug is also capable of determining its speed, which corresponds to measuring the length
of a tangent vector. The bug can also measure changes in directions, which can be represented as
angles between tangent vectors. These two pieces of information—lengths and angles—precisely
comprise the dot product of tangent vectors. As a result, we conclude that the first fundametal
form (i.e. the dot product on tangent planes) is also an intrinsic property of surfaces.

In particular, the bug can crawl around a surface and compute its first fundamental form at
various points. By integrating the determinant of the first fundamental form, as in Definition 6.3,
the bug can measure the area of the surface (by the way, the bug received an A+ in calculus).
This suggests that surface area is yet another intrinsic property of surfaces.

Moreover, going back to our rules for what our bug can perceive, we see that these correspond
rather precisely to the information contained in the tangent planes and first fundamental form of a
surface. Thus, mathematically speaking, we can go out on a limb and try to formally define what
we mean by the intrinsic geometry of a surface as follows:

The intrinsic geometric properties of a surface are defined to be precisely those that can be
characterised using only the points of the surface itself, the various tangent planes of the
surface, and the first fundamental form of the surface.
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The branch of differential geometry arising from this viewpoint is known as Riemannian geometry,
which originated from Bernhard Riemann (German mathematician, 1826–1866) in the 1860s.

We end this discussion by considering some other properties of surfaces that we have studied:
• The unit normals of a surface S are defined as arrows based on S but pointing away from
S. To “point away from S”, one requires S to live in some larger space. Thus, we see that
the unit normal is an extrinsic property of S depending on the ambient setting.

• The second fundamental form of a surface S ⊆ R3, which measures how its unit normal
changes as one moves along S, is also an extrinsic property.

• Recall that the “two-sidedness” of a surface S was defined through its unit normals. As
a result, one might expect orientability (see Definition 5.14) to be an extrinsic property.
However, one can characterise orientability using only the tangent planes and the first
fundamental form (again, for brevity, we avoid discussing any details in these notes). As a
result, orientability is fact an intrinsic property of surfaces.

• Imagine a bug crawling along a surface without changing its velocity, that is, without
altering either its speed or direction. These trajectories of non-accelerating bugs are known
as the geodesics of a surface. One can in fact show that geodesics can be constructed using
only the first fundamental form and hence are intrinsic properties of surfaces.

In Section 3.4, we described all the possible intrinsic curve geometries. However, the situation for
surfaces is far most complicated, as we will see in the subsequent discussions, and we will not be
able to achieve such a simple characterisation of all surface geometries.

6.3.2. The Theorema Egregium. Previously, we argued that the unit normals and the second fun-
damental form of a surface S ⊆ R3 are extrinsic properties. Following this chain of reasoning:

• The Weingarten matrix, defined from the first and second fundamental forms (see the
formula in Definition 6.6), is also an extrinsic property of surfaces.

• Since the principal curvatures are simply the eigenvalues of the Weingarten matrix, then
the principal curvatures are also extrinsic properties.

• The mean curvature (see Definition 6.10) can also be shown to be extrinsic.
Now, since the Gauss curvature is simply the product of the principal curvatures, one would
expect it to also be an extrinsic property of surfaces. What is miraculous, however, is that the
Gauss curvature is in fact an intrinsic property. This is the statement of the theorema egregium,
established by Carl Friedrich Gauss (German mathematician, 1777–1855) in the 1820s:

Theorem 6.9. The Gauss curvature is an intrinsic geometric property of surfaces.

The theorema egregium, which is Latin for “remarkable theorem”, stands as one of the crowning
achievements in differential geometry. The remarkable fact is that this Gauss curvature, defined
using a combination of extrinsic quantities, actually contains information that is more fundamental
and intrinsic in nature, that is, it is completely independent of how a surface is situated in a larger
space. Indeed, through some extensive computations, one can show that the Gauss curvature can
be expressed only in terms of the first fundamental form and its derivatives; see, for instance, [5].
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Let us discuss some implications of the theorema egregium. First, a bit of terminology: we say
isometric to mean that two surfaces possess the same intrinsic geometry. More specifically:

Definition 6.12. Let S1 and S2 be two surfaces. We say that S1 and S2 are isometric iff they
“have the same tangent planes and first fundamental form”.

Of course, Definition 6.12 is merely an informal statement. There is a formal, rigorous definition
of isometry (see [1]), however we will not discuss the details in these notes. Note that in light of
Definition 6.12, the theorema egregium can be restated as follows:

Corollary 6.10. Two surfaces that are isometric have the same Gauss curvature.

Although our understanding of isometry is informal, we can still discuss its interpretations.
Recall that the tangent planes and the first fundamental form describe directions, lengths, and
angles along a surface. Thus, surfaces S1 and S2 that are isometric have the same information
regarding directions, lengths, and angles. One way to think of this is to imagine that S1 can be
transformed into S2, and vice versa, in a manner that preserves distances and angles; in other
words, S1 can be transformed into S2 without “stretching” the surface along any direction.

Example 6.23. The spheres C1 and C2 from (6.9) are isometric. In fact, C1 can be transformed
into C2 by simply translating (i.e. shifting) its center from the origin to the point (1, 1, 1). Note
this transformation is isometric, as it does not alter any distances and angles along the sphere.

R Y

Figure 6.13. The surfaces R (left) and Y (right) from Example 6.24.

Example 6.24. For a more interesting example, consider a rectangle and a half-cylinder:

R = {(x, y, z) ∈ R3 | 0 < x < π, 0 < y < π, z = 0},

Y = {(x, y, z) ∈ R3 | x2 + y2 = 1, y > 0, 0 < z < π}.

See Figure 6.13 for graphical depictions of R and Y, and observe the obvious: R looks flat, while Y
looks curved. However, one can actually argue that R and Y are isometric.

Informally, one can imagine R as being a flat piece of paper; one can then pick up this paper
and bend it into the half cylinder Y. Although this transformation curves the piece of paper along
one direction, it does not change any distances or angles, i.e. it does not stretch this piece of paper
along any direction. As a result, we see that R and Y are intrinsically the same.
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On a more formal level, we can show that, with respect to certain parametrisations, the first
fundamental forms on both R and Y are simply the identity matrix; see Example 6.1.

In addition, note that R, being flat, has zero Gauss curvature. Similarly, recall from Example
6.19 that the cylinder, and hence its subset Y, also has zero Gauss curvature. (Recall that this is
due to Y not being curved in the z-direction.) Consequently, in this case, the theorema egregium is
affirmed: the isometric surfaces R and Y indeed have the same Gauss curvature.

For a real-world connection to the theorema egregium, let us think of a map of the world projected
onto a flat surface. Recall that some continent on this map (usually Antarctica) is always much
bigger than it actually is; in other words, some part of this map is distorted. Why is this so? Why
doesn’t someone draw a map that does not distort anywhere?

The reason lies in the fact that the surface of the globe—the contents of the map—is actually
(approximately) a sphere. Recall from Example 6.20 that the sphere has positive Gauss curvature.
The surface of the map, in contrast, is flat and hence has zero Gauss curvature.

Now, if one could transplant the sphere onto a flat piece of paper without stretching, then the
theorema egregium implies that the paper and the sphere must have the same Gauss curvature.
However, the above shows this is not the case. Hence, we conclude that any mapping from a globe’s
surface onto a flat piece of paper must stretch and distort the surface somewhere.

The second real-world connection we discuss comes in the form of a life hack. Suppose you are
eating a slice of pizza. To keep your hands clean, you of course grab the pizza by the crust on the
edge. However, if the crust is soft, then the pizza slice will bend downward toward the centre, and
you will be very sad as all the topping falls off; see the left drawing in Figure 6.14.

Figure 6.14. The left picture shows the “wrong” way to eat a slice of pizza,
in which all the scrumptious topping falls off. The right picture shows how
to eat the slice of pizza “correctly”, so that the topping stays on.

In this situation, the life hack is as follows: when holding the pizza, curl it upwards a bit in
the angular direction, as in the right drawing in Figure 6.14. With the pizza slightly bent in the
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angular direction, it will no longer bend downward toward the centre. Thus, the topping will
remain safely on the pizza, and you remain happy with your meal.

So why does this work? The idea is that an unbent pizza slice lies flat and hence has zero Gauss
curvature. Assuming the crust does not stretch, then by the theorema egregium, any bending of the
pizza must preserve the vanishing Gauss curvature. Here, the pizza can bend downward toward
the centre, as in the left drawing in Figure 6.14, without changing the Gauss curvature, since the
pizza remains unbent in the remaining angular direction; see Figure 6.15.

On the other hand, if we hold the pizza slice as in the right drawing in Figure 6.14, then it
is already bent in the angular direction. In this case, one cannot further bend the pizza radially
toward the centre without changing the Gauss curvature (since if this is done, then the pizza slice is
bent in both principal directions). In summary, thanks to the theorema egregium, by preemptively
bending in one direction, the pizza slice now becomes rigid in the other direction.

Figure 6.15. In the left diagram, the pizza slice is flat in both the radial
(green) and angular (red) directions; here, the pizza can be bent in either
one of the two directions and still maintain zero Gauss curvature. In the
right diagram, the pizza is flat in the radial (green) direction but already
bent in the angular (red) direction; here, the pizza can no longer be bent in
the radial direction without changing the Gauss curvature.

Remark. One can do a similar but less messy demonstration of this principle using a piece of paper
in the place of a greasy pizza slice. For the same reason as before, bending the paper along one
dimension again prevents the paper from being bent along the remaining dimension.

Finally, recall from Section 3.4 that curves could only have four basic “types” of intrinsic geome-
tries: (1) lines, (2) rays, (3) finite intervals (of various lengths), and (4) loops (of various lengths).
In particular, while a curve could be curved in a wide variety of manners, all of this information is
in fact purely extrinsic in nature. In other words, how a curve is curved is completely dependent
on how this curve is situated within some larger space.

The theorema egregium implies, in contrast, that the intrinsic geometry of surfaces is far more
complicated. While the principal and mean curvatures are extrinsic and depend on how a sur-
face is embedded in a larger space, a very special part of this curvature information—the Gauss
curvature—is in fact intrinsic. Thus, unlike curves, a surface can be “more fundamentally” curved



170 (MTH5109) LECTURE NOTES

in a manner that is divorced from how it sits in the ambient space. Simple examples we have
already discussed include the sphere (Example 6.20) and the hyperboloid (Example 6.21).

6.3.3. The Gauss–Bonnet Theorem. For a surface S ⊆ R3, the theorema egregium shows that its
Gauss curvature K contains information about its intrinsic geometry. Now, since K is a real-valued
function on S, we can make sense of the surface integral of the Gauss curvature K over S. Another
miraculous fact, on top of the theorema egregium, is that this integral of K contains information
that is even more “fundamental” than the intrinsic geometry of S.

This is the topic of the other landmark result of this section, the Gauss–Bonnet theorem, which
was proved independently by Carl Friedrich Gauss (of the theorema egregium) and by Pierre Bonnet
(French mathematician, 1819–1892) in the early-to-mid 1800s. Here, we will discuss the simplest
of many versions of the theorem. For more general statements of the Gauss–Bonnet theorem, see
previous years’ lecture notes or a textbook on differential geometry.

Before, giving a formal statement of the theorem, we must first set some terminology.

Definition 6.13. A surface S ⊆ R3 is called closed iff the following hold:
• S is bounded, that is, S is contained in a finite region of R3.
• S is boundaryless, that is, S “has no edge, where it suddenly terminates”.

Rather than giving formal definitions of bounded and boundaryless, we keep with the informal
nature of our discussions and instead demonstrate these by example:

Example 6.25. The sphere S2 (see Definition 5.8) is bounded, since it lies within the finite region

{(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1},

i.e. the closed unit ball about the origin. On the other hand, the hyperboloid from Example 6.17 is
not bounded, since there is a portion of it that “goes off toward infinity”; see Figure 6.10.
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Figure 6.16. The left drawing is the hemisphere H from Example 6.26,
with its boundary E drawn as a red curve. The right drawing, on the other
hand, is the sphere S2, which is boundaryless.

Example 6.26. The hemisphere from Example 5.7, given by

H = {(x, y, z) | x2 + y2 + z2 = 1, z > 0},
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is not boundaryless. In particular, its boundary is given by the equator

E = {(x, y, z) | x2 + y2 = 1, z = 0}.

This is drawn in the left diagram of Figure 6.16, with the boundary E in red.
On the other hand, the sphere S2 is boundaryless, as it lacks a similar boundary set at which S2

suddenly “terminates”; see the right drawing in Figure 6.16.

Definition 6.14. The genus of a surface S ⊆ R3 is the “number of holes in S”.

Again, for brevity, the genus is better demonstrated informally through examples:

Example 6.27. Consider the three surfaces drawn in Figure 6.17, which have, from left to right,
zero “holes”, one “hole”, and two “holes”. Thus, by Definition 6.14, the genus of each of the
surfaces in Figure 6.17 are—again from left to right—0, 1, and 2.

Figure 6.17. The above surfaces have genus 0, 1, and 2, respectively.

For more formal discussions of all the above terminology, the reader is referred to [1, 5]. With
this terminology in place, we can now state the Gauss–Bonnet theorem:

Theorem 6.11. Let S ⊆ R3 be a closed surface, and let K denote its Gauss curvature. Then,∫∫
S

KdA = 4π(1− gS),

where gS denotes the genus of S.

The proof of the Gauss–Bonnet theorem relies on finding special identities for the Gauss curva-
ture (this is closely connected to the theorema egregium and the intrinsic description of the Gauss
curvature) and on applying Green’s theorem from vector calculus to integrals on local parametri-
sations of S. See the lecture notes [4] or the textbooks [1, 5] for details.

Example 6.28. Consider the sphere in the left drawing S1 of Figure 6.18. From the brief discussion
in Example 6.27, we know that S1 which has genus zero. Thus, by the Gauss–Bonnet theorem,∫∫

S1

KdA = 4π(1− 0) = 4π.

In case you are not yet convinced, this integral can also be computed directly. Suppose S1 is the
unit sphere S2, so that K ≡ 1 by Example 6.20. As a result,∫∫

S1

KdA =

∫∫
S2
dA
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is simply the surface area of S2, which, by the computations in Example 6.5, is indeed 4π.

Figure 6.18. The surfaces S1 and S2 in Examples 6.28 and 6.29.

Example 6.29. Next, observe that the surface S2 in the right drawing of Figure 6.18 also has no
holes, and hence also has genus 0. Therefore, the Gauss–Bonnet theorem again implies∫∫

S2

KdA = 4π(1− 0) = 4π.

Of course, S2 has vastly different shape than S1, with S1 and S2 having very different values
for their Gauss curvatures. (In particular, the Gauss curvature of S2 is negative in many places.)
What is interesting, though, is that the surface integrals over S1 and S2 of these rather different
Gauss curvatures are equal! As a result, while the Gauss curvature is negative at some points of
S2, it must also be extra positive at other points in order to compensate for the negativity.

In other words, these surface integrals of the Gauss curvature over S1 and S2 do not see the
specific shapes of these surfaces. Indeed, the Gauss–Bonnet theorem states that the only information
that is captured by this is the number of “holes” (that is, zero) in S1 and S2.

Figure 6.19. The surface S3 discussed in Examples 6.30.
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Example 6.30. Finally, the surface S3 in Figure 6.19 has genus 4, thus∫∫
S3

KdA = 4π(1− 4) = −12π.

Again, no matter how complex the shape of S3 may be, as long as it contains four “holes”, then
the above integral must necessarily evaluate to −12π.

Now, if we take a surface and we deform (i.e. stretch or compress) it just a tiny bit, then this
operation will not change the genus of the surface. For example, this was the case in Examples
6.28 and 6.29, when S1 was “deformed” into S2. Thus, the Gauss–Bonnet theorem states that
the surface integral of the Gauss curvature is in fact independent of these deformations. In other
words, this integral is more than just an intrinsic geometric property of surfaces; it describes an
even more fundamental topological property, i.e. the number of “holes” the surface contains.

This is the remarkable aspect of the Gauss–Bonnet theorem. Here, one is dealing with the
Gauss curvature and surface integrals, both of which are (intrinsic) geometric properties of sur-
faces. However, this special combination of these geometric quantities—the surface integral of the
Gauss curvature—yields instead a purely topological property. Indeed, the Gauss–Bonnet theorem
highlights a deep connection between the geometry and the topology of surfaces.

Furthermore, observe that around each “hole” of a surface, for instance one of the four found in
S3 from Example 6.30, the Gauss curvature is negative. (This can be argued from the intuitions
described within and following Figure 6.11.) More specifically, the Gauss–Bonnet theorem states
that each “hole” contributes precisely −4π to the total Gauss curvature of the entire surface.

Finally, the Gauss–Bonnet theorem can be compared another familiar quantity: the winding
number of plane curves. Recall that the winding number, defined using geometric quantities (the
signed curvature and path integrals) in Definition 3.6, also describes a topological property that
is not changed by deformations: the number of times the curve revolves anticlockwise. Thus, one
can think of the Gauss–Bonnet theorem as a kind of analogue of winding numbers for surfaces.
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Notes and Acknowledgments

The present notes are based on notes [6] from an earlier iteration of MTH5109 that I taught
in Autumn 2016. (Moreover, the Autumn 2016 MTH5109 lecture notes were themselves heavily
based on the Autumn 2015 MTH5109 lecture notes [4] by Prof. Shahn Majid.)

For the current notes, I added several elaborations on basic concepts, including:
• An introductory section on the main ideas and aims of the module.
• More discussion on what curves and surfaces formally are.
• More detailed interpretations of various definitions and results.
• More emphasis on tangent lines and planes.
• A more systematic development of integrals on curves and surfaces.
• More details on unit normals and orientations of surfaces.
• Additional examples of curves and surfaces, along with computer-generated plots.
• Some informal discussions on intrinsic versus extrinsic geometry.

To compensate for this additional material, some topics from previous years were removed:
• The Frenet–Serret formulas.
• The theory of curves in surfaces: geodesic and normal curvatures, Euler’s theorem.
• Geodesic curves.
• More general versions of the Gauss–Bonnet theorem (i.e. for surfaces with boundaries).
• Proofs of the Gauss–Bonnet theorems.

While these notes were written with the intention of being entirely self-contained, the interested
reader may also be interested in the following texts from the official module reading list:

• Christian Bär, Elementary Differential Geometry, 2010, [1].
• Andrew Pressley, Elementary Differential Geometry, 2010, [5].
• W. B. Raymond Lickorish, An Introduction to Knot Theory, 1997, [3].

These texts contain material related to and beyond what is covered by these notes.
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