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Introduction Elements of Mathematical GR

Mathematical General Relativity

In general relativity, spacetime is modeled as 4-dimensional Lorentzian
manifold (M, g) satisfying the Einstein equations:

Ricg −
1

2
Scalg ·g = T .

Ricg , Scalg : Ricci and scalar curvature of (M, g).
T : stress-energy tensor for matter field.

Vacuum spacetimes: no matter field (T ≡ 0)

Einstein-vacuum equations: Ricg ≡ 0.
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Introduction Elements of Mathematical GR

Null Cones

Wave equation, �gφ = gαβ∇α∇βφ ≡ 0.

Can be thought of as linearized model for vacuum equations.

Null hypersurfaces: induced metric is degenerate

Characteristics of the wave equation.
Generated by null geodesics.

Null cone: null hypersurface N
beginning from 2-sphere or point.

Curvature flux: L2-norm on N of
certain components of R.

Important quantity in energy
estimates.

Truncated null cone.
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Introduction Explicit and Near-Explicit Solutions

Schwarzschild Spacetimes

Schwarzschild spacetime: spherically symmetric, black hole spacetimes

m ≥ 0: “mass”.
Satisfies Einstein-vacuum equations.
In the outer region r > 2m, metric can be expressed as

g = −

(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1

dr 2 + r 2γ̊.

m = 0: Minkowski spacetime (−dt2 + dr 2 + r 2γ̊).

Infinity: represents faraway observer.

In these spacetimes, timelike/null/spacelike infinity can be explicitly
constructed via conformal compactification.
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Introduction Explicit and Near-Explicit Solutions

Schwarzschild Spacetimes
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Schwarzschild spacetime.
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Minkowski spacetime.
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Introduction Explicit and Near-Explicit Solutions

Near-Minkowski Spacetimes

T

Christodoulou-Klainerman: asymptotic
stability of Minkowski spacetimes.

Can recover similar structure at infinity
as Minkowski spacetime.

Stability of Schwarzschild, Kerr
spacetimes: open problem.

i+

i−

i0

I+

I−

Near-Minkowski, at infinity.
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Introduction ADM and Bondi Mass

Mass

In asymptotically flat spacetimes, with similar structures “at infinity”,
there exist notions of total mass.

ADM mass: applicable to spacelike hypersurfaces

Computed as limit at spacelike infinity.
Represents, e.g., total mass of initial data.

Bondi mass: applicable to null cones

Computed as limit at a cut of null infinity.
Represents mass remaining in system after some has radiated away.
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Introduction ADM and Bondi Mass

Mass

Schwarzschild: static solution

mADM(init.) = m.
mBondi ≡ m on I+.

i+

i0

I+

mADM=m

mBondi≡m

Near-Minkowski: not static

Positive mass thm.: mADM(init.) ≥ 0.
Mass loss: 0 ≤ mBondi ≤ mADM(init.).
mBondi ↘ 0 in along I+.

i+

i0

I+

mADM≥0

mBondi decreasing

mBondi↘0
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Introduction The Main Problem

Main Goals

Consider “near-Schwarzschild spacetime”.

“Eliminate all assumptions except at single infinite null cone.”

(M, g): vacuum spacetime.
N : future outgoing infinite null cone in (M, g).
N is “close to Schwarzschild null cone”.

I+

N

mBondi≈m?

Intuitive picture

N

∞ mBondi≈m?

Assumed setting
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Introduction The Main Problem

Main Goals

Assume: N is “near-Schwarzschild”.

“Weighted curvature flux” of N close to Schwarzschild.
“Initial data” of N close to Schwarzschild.

Objective 1: control geometry of N .

Quantitative bounds (for connection coefficients).
Asymptotic limits for coefficients at infinity.

Objective 2: connection to physical quantities.

Control Bondi mass for N .
Can also consider angular momentum, rate of mass loss.
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Introduction The Main Problem

Main Features

No global assumptions on spacetime.

All assumptions on single null cone N .

Low-regularity quantitative assumptions.

At the level of curvature flux (L2-norm of curvature on N ).

Physical motivation.

What controls Bondi mass, etc.?
Requires finding “correct” foliation, i.e., approach to infinity.
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Geometry of Null Cones Geodesic Foliations

Geodesic Foliations

Geodesic foliation: express N as
one-parameter family of spheres.

Spheres determined by affine
parameters of the null geodesics
generating N .
Algebraically simplest foliation.

Write N ' [s0,∞)× S2.

s: affine parameter of null geodesics
(starting from s0).
s0: radius of the initial sphere of N .

s=s0

s=s0+1

s=s0+1.5

Geodesic foliation.
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Geometry of Null Cones Geodesic Foliations

Geodesic Foliations

Sτ: level set s = τ.

/γ: induced metrics on the Sτ’s.

Consider adapted null frames:

2 spacelike directions e1, e2

tangent to Sτ.
2 null directions normal to Sτ.

L tangent to N (and
satisfies Ls ≡ 1)
L transverse to N (and
satisfies g(L, L) ≡ −2).

(Sτ,/γ) e1,e2

e1,e2

LL

Null frame.
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Geometry of Null Cones Connection and Curvature

Formulation of Null Geometry

Decompose spacetime curvature and connection quantities:

Spacetime curvature R:

αab = R(L, ea, L, eb), βa =
1

2
R(L, L, L, ea), ρ =

1

4
R(L, L, L, L),

αab = R(L, ea, L, eb), β
a
=

1

2
R(L, L, L, ea), σ =

1

4
?R(L, L, L, L).

Connection coefficients:

χab = g(DeaL, eb), χ
ab

= g(DeaL, eb), ζa =
1

2
g(DeaL, L).

Mass aspect function (related to Hawking and Bondi mass):

µ = −/γab∇aζb − ρ+
1

2
/γac/γbd χ̂abχ̂cd .
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Geometry of Null Cones Connection and Curvature

The Null Structure Equations

The connection and curvature coefficients are related via a system of
geometric PDE, called the null structure equations.

Evolution equations:

∇Lχ ' −χ · χ+ α, ∇Lζ ' χ · ζ+ β, ∇Lχ ' ρ+∇ζ+ l.o., etc.

Elliptic equations:

Dχ̂ ' β+ l.o., Dζ ' (ρ+ µ, σ) + l.o., K ' −ρ+ χ · χ, etc.

Null Bianchi equations:

∇Lβ ' Dα+ χ · β+ ζ · α, etc.

The vacuum equations are encoded within the structure equations.
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Geometry of Null Cones Some Important Quantities

Curvature Flux

Define the weighted curvature flux for N to be

F(N ) = ‖s2α‖L2(N ) + ‖s2β‖L2(N ) + ‖sρ‖L2(N )

+ ‖sσ‖L2(N ) + ‖β‖L2(N ).

Generated as a local energy quantity from Bel-Robinson tensor.
Bel-Robinson tensor: “energy density” for spacetime curvature.

Weights analogous to those found in C-K and K-N.

Note: s will be comparable to radii r of level spheres.
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Geometry of Null Cones Some Important Quantities

Hawking and Bondi Mass

Hawking mass of Sτ:

m(τ) =
r

2

[
1 +

1

16π

∫
Sτ

tr χ tr χ

]
=

r

8π

∫
Sτ
µ.

r : area radius of Sτ.

If r−2/γ is asymptotically round:

m(τ) converges to Bondi energy as τ↗ ∞.
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Geometry of Null Cones Schwarzschild Spacetimes

The Schwarzschild Case

Standard outgoing shear-free null cones are:

N = {t − r∗ = c , r ≥ r0},

r∗ is the “tortoise coordinate”

r∗ = r + 2m log
( r

2m
− 1

)
.

The affine parameter s on N is simply r .

The null vector fields are

L =

(
1 −

2m

r

)−1

∂t + ∂r , L = ∂t −

(
1 −

2m

r

)
∂r .
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Geometry of Null Cones Schwarzschild Spacetimes

The Schwarzschild Case

Ricci coefficients:

χ = r−1/γ, χ = −r−1

(
1 −

2m

r

)
/γ, ζ ≡ 0.

Nonvanishing curvature coefficients:

ρ = −
2m

r 3
.

Mass aspect function:

µ =
2m

r 3
.
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Geometry of Null Cones The Main Goals

The Main Objectives, Revisited

1 “Get to infinity.”

Assume: curvature flux of N close to Schwarzschild values.
Assume: connection coefficients near Schwarzschild values at Ss0 .
Show: connection coefficients uniformly controlled on N .
Show: limits of connection coefficients at infinity.

2 “Get the right infinity.”

Infinity from Step 1 needs not correspond to Bondi mass.
Search instead for a “better” infinity.
Controlling “Bondi mass” and “angular momentum”.
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Result I. Control of the Null Geometry The First Main Theorem

Theorem 1

Theorem (Alexakis-S., 2012: Control of Null Geometry)

Let N be as before, and assume the initial sphere Ss0 has radius s0 > 2m.
Assume the curvature flux bounds

s
− 3

2
0 ‖s

2α‖L2
sL

2
ω
+ s

− 3
2

0 ‖s
2β‖L2

sL
2
ω
+ s

− 1
2

0 ‖s(ρ+ 2ms−3)‖L2
sL

2
ω

+ s
− 1

2
0 ‖sσ‖L2

sL
2
ω
+ s

1
2

0 ‖β‖L2
sL

2
ω
≤ C ,

and assume the following initial value bounds on Ss0 :

s0‖ tr χ− 2s−1
0 ‖L∞ω + s

1
2

0 ‖χ− s−1
0 /γ‖

H
1/2
ω

+ s
1
2

0 ‖ζ‖H
1/2
ω
≤ C ,

‖χ+ s−1
0 /γ(1 − 2ms−1

0 )‖B0
ω
≤ C ,

s0‖∇(tr χ)‖B0
ω
+ s0‖µ− 2ms−3

0 ‖B0
ω
≤ C .
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Result I. Control of the Null Geometry The First Main Theorem

Theorem 1

Theorem (Alexakis-S., 2012: Control of Null Geometry)

If C is sufficiently small with respect to the “geometry of S”, then:

s−1
0 ‖s

2(tr χ− 2s−1)‖L∞s L∞ω . C ,

s
− 1

2
0 ‖s(χ− s−1/γ)‖L∞ωL2

s
+ s

− 1
2

0 ‖sζ‖L∞ωL2
s
. C ,

s−1
0 ‖s

3
2 (χ− s−1/γ)‖L4

ωL∞s + s−1
0 ‖s

3
2 ζ‖L4

ωL∞s . C ,

s
− 3

2
0 ‖∇s [s

2(χ− s−1/γ)]‖L2
sL

2
ω
+ s

− 3
2

0 ‖∇s(s
2ζ)‖L2

sL
2
ω
. C ,

s
− 1

2
0 ‖s∇χ‖L2

sL
2
ω
+ s

− 1
2

0 ‖s∇ζ‖L2
sL

2
ω
. C ,

‖χ+ s−1(1 − 2ms−1)/γ‖L2
ωL∞s . C ,

s−1
0 ‖s

2∇(tr χ)‖L2
ωL∞s + s−1

0 ‖s
2(µ− 2ms−3)‖L2

ωL∞s . C .
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Result I. Control of the Null Geometry Analysis of Null Cones

The Analysis

Methods for controlling null geometry by curvature flux pioneered by
Klainerman-Rodnianski (2005).

Finite geodesically foliated truncated null cones in vacuum.
Other variations (Q. Wang, Parlongue, S.)

Application: breakdown criteria for Einstein equations, closely related
to L2-curvature conjecture.

New generalizations and simplifications (S.).
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Result I. Control of the Null Geometry Analysis of Null Cones

The Analysis

Recall: assumed connection quantities are initially near-Schwarzschild.

PDE problem: use curvature flux bounds and null structure equations
to propagate connection estimates uniformly to all of N .

Big bootstrap process.
Find and exploit structure of null structure equations on N .
Evolution equations, elliptic equations, null Bianchi equations.
New: additional structures in Gauss-Codazzi equations.

Propagation leads to limits of connection quantities at infinity.
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Result I. Control of the Null Geometry Analysis of Null Cones

Major Difficulties

Why is this hard?

Low regularity (assuming only bounds for curvature on N )

Canonical coordinate vector fields lack sufficient regularity.
Need Besov-type norms and estimates to close.

Remedies:

Geometric tensorial Littlewood-Paley theory (heat flow, spectral).
Bilinear product and elliptic estimates (in Besov norms).
New: regular t-parallel frames (simplifies product estimates).
New: partial conformal smoothing (simplifies elliptic estimates).
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Result I. Control of the Null Geometry The Renormalized System

Conversion to Small-Data Problem

In PDEs: common to convert stability problem to small-data problem.

Consider as variables (weighted) deviations of curvature and connection
coefficients from Schwarzschild values.
Convert outgoing infinite near-cone to finite near-cylinder.

s=s0

s↗∞

Physical setting. t=0

t↗1

Renormalized setting.
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Result I. Control of the Null Geometry The Renormalized System

The Renormalized System

Renormalization of system has two main steps:

1 Rescaling of metric: γ = s−2/γ (expanding cone ⇒ cylinder):
2 Change of evolutionary variable

s ∈ [s0,∞) ⇒ t = 1 −
s0

s
∈ [0, 1).

This transforms the natural covariant system (now w.r.t. γ and t):

Q. What are “natural” derivative operators to consider?

Spherical covariant derivatives to not change.
Elliptic operators are rescaled.
t-covariant derivatives ∇t (general construction).
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Result I. Control of the Null Geometry The Renormalized System

The Renormalized System

Renormalized Ricci coefficients:

H = s−1
0 (χ− s−1/γ), Z = s−1

0 sζ, H = s−1χ+ s−2(1 − 2ms−1)/γ.

Renormalized curvature coefficients:

A = s−2
0 s2α, B = s−2

0 s3β, R = s−1
0 [s3(ρ+ iσ) + 2m], B = sβ.

Renormalized mass aspect function:

M = s−1
0 (s3µ− 2m).
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Result I. Control of the Null Geometry The Renormalized System

Why Renormalize?

1 The geometries of the spheres, w.r.t. γ, are nearly uniform.

Estimates on spheres have common constants.
Highlights the relevant quantities for controlling geometry.

2 The weighted inequalities in the main theorem become unweighted
inequalities in the renormalized quantities.

Renormalized quantities expected to be uniformly O(ε).

3 Can reformulate null structure equations in renormalized system.

All analysis done on renormalized system.

4 Limits at infinity are w.r.t. renormalized quantities and γ.
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Result I. Control of the Null Geometry The Renormalized System

Renormalized Main Theorem I

Theorem (Renormalized Formulation)

Let N be as before. Assume the curvature flux bounds

‖A‖L2
tL

2
ω
+ ‖B‖L2

tL
2
ω
+ ‖R‖L2

tL
2
ω
+ ‖B‖L2

tL
2
ω
≤ C ,

and assume the following initial value bounds on Ss0 :

‖ tr H‖L∞ω + ‖(H,Z )‖
H

1/2
ω

+ ‖(H,∇(tr H),M)‖B0
ω
≤ C .

If C is sufficiently small with respect to the “geometry of S”, then:

‖ tr H‖L∞t L∞ω + ‖(H,Z )‖
N1
t,ω∩L∞x L2

t∩L∞t H
1/2
ω
. C ,

‖(H,∇(tr H),M)‖L∞t B0
ω∩L2

xL
∞
t
. C .

Moreover, the geometries of the level spheres of N “remain regular”.
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Result I. Control of the Null Geometry The Limiting Geometry

Limits at Infinity

Can refine renormalized theorem to produce limits at infinity.

∇tF is integrable on N ⇒ F is controlled uniformly on every level
sphere and has a limit at infinity.

Limiting geometry:

γ converges to a metric as t ↗ 1 (i.e., s ↗ ∞).
Weaker (L2-type) convergence for Christoffel symbols, connection.

Limiting quantities: (H, Z , H, M)

Regularity is propagated from Ss0 to infinity.
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Result I. Control of the Null Geometry The Limiting Geometry

Extension to Infinity

Corollary (Alexakis-S., 2012: Limits at Infinity)

Assume the same as before.

γ has a limit as s ↗ ∞ (in C 0 and H1).

H, Z , H, M have limits (with respect to γ) as s ↗ ∞. These limits
can be controlled (in same norms as initial condition) by C .

Furthermore, with respect to /γ and s, the Hawking masses

m(s) =
r(s)

2

[
1 +

1

16π

∫
Ss

tr χ tr χ

]
of the level spheres have a limit m(∞) as s ↗ ∞. Moreover,

|m(∞) − m| . C .
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Result I. Control of the Null Geometry Technical Simplifications

Bilinear Product Estimates

To prove tensorial product estimates, one generally:

Decomposes into local scalars via coordinate fields.
Applies Euclidean product estimates.
Reconstructs tensorial estimates.

Problem: transported coordinate fields barely lack enough regularity.

Solution: t-parallel frames are in fact more regular.

Observation: This is due to structure in Codazzi equations:

curlχ ' β+ l.o.t., curl H ' B + l.o.t..

Propagation of transported coordinate frames depend on ∇χ ⇒ “loss
of half a derivative”.
Propagation of t-parallel frames depend only on curlχ ⇒ “no loss”.
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Result I. Control of the Null Geometry Technical Simplifications

(Besov) Elliptic Estimates

Want elliptic estimates of the form:

‖∇D−1ξ‖B0 . ‖ξ‖B0 .

D: elliptic Hodge operator.
B0: (geometric) zero-order Besov norm.

Problem: Gauss curvatures of spheres are H− 1
2 .

Proofs are technical, and result in additional error terms.

Solution: partial conformal smoothing method

Observation: decomposition of Gauss curvature as L2 + div H
1
2 .

By conformal transform, can remove divergence from curvature.
Working with L2 Gauss curvature, proofs are greatly simplified.
Removes previous error terms.
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Result I. Control of the Null Geometry Technical Simplifications

Avoidance of Infinite Decompositions

Problem: previous proofs required elaborate infinite decompositions.

Solution: bootstrap using “sum” norms.

Observation: exact decomposition does not matter, only need some
decomposition with required estimates.

Standard “sum” norms capture exactly this situation.
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Result II. Controlling Bondi Mass Asymptotically Round Families

Obtaining the Bondi Energy

If the limiting sphere of N (w.r.t. γ) is round/Euclidean:

The Hawking masses of the spheres converge to the Bondi energy.

Problem: in our case, limiting sphere needs not be Euclidean.

Gauss curvatures of spheres (Ss , γ) given by

K = 1 −
1

2
tr H + O(s−1).

The Gauss curvatures have (very weak) limit at infinity.
This limit needs not be 1.
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Result II. Controlling Bondi Mass Asymptotically Round Families

Finding the Correct Infinity

Goal: find family of asymptotically round spheres going to infinity.

Mechanism for obtaining spheres: change of geodesic foliations.

Can rescale parameter of each null generator by constant.
Change of foliation given by distortion function v : S2 → R.
ev maps each null generator to scaling factor.

Decent foliation. Great foliation.
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Result II. Controlling Bondi Mass Changes of Foliations

Changes of Geodesic Foliations

Transformation defined by relations:

Rescale tangent null vector field: L′ = evL.
Change of affine parameter: (s ′ − s0) = e−v (s − s0).

Other quantities also change by explicit formulas:

Null frame elements: e1, e2, L
Connection coefficients: χ, χ, ζ
Curvature coefficients: α, β, ρ, σ, β
Similarly for the renormalized quantities:

γ, t,H,Z ,H,A,B,R,R.
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Result II. Controlling Bondi Mass Changes of Foliations

The Main Idea

From the Gauss equation:

K′ = 1 −
1

2
tr′H ′ + O(s ′−1).

Goal: find change of foliation v so that tr′H ′ vanishes.

From change of foliation formulas (long computation),

tr′H ′ = tr H + 2∆γv + 2(e2v − 1) + O(s−1).

Problem becomes an elliptic equation at infinity:

∆γ∞v + e2v = 1 −
1

2
tr∞ H∞ = K∞.

Closely related to the uniformization theorem.
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Result II. Controlling Bondi Mass Finding the Foliation

Main Difficulties

1 Want smooth family of spheres.

Obtain family vy of refoliations, with vy → v .
Solve approximate PDE for vy on Sy .
Choose level sphere s ′y = y from each vy -foliation.

2 K converges too weakly (H− 1
2 ) to infinity.

Our desired v is not regular enough for estimates.
Solution: partial conformal smoothing of γ.
Smoothes curvature from H− 1

2 to L2.

3 Need convergence of Hawking masses as y ↗ ∞.

Need uniform smallness for vy ’s (in appropriate norms).
Need convergence limy↗∞ vy = v (in appropriate norms).
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Result II. Controlling Bondi Mass Finding the Foliation

Construction of the vy ’s

1 Partial conformal smoothing γ 7→ e2uγ.

Removes worst term from K ⇒ curvature now in L2.
Conformal factor u → 0 as s ↗ ∞.
u is not included in our construction of v .

2 More partial conformal smoothing.

Technique applied by L. Bieri.
Smoothes Gauss curvature from L2 to L∞.

3 Uniformization problem.

Final part of v obtained by solving uniformization problem on
smoothed spheres with L∞-curvature.
Technique from Christodoulou-Klainerman.
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Result II. Controlling Bondi Mass The Final Estimates

Main Theorem II

Theorem (Alexakis-S., 2012: Control of Bondi mass)

Assume the same as before. Then,

|mBondi (N ) − m| . C .

Similar estimates hold for angular momentum and rate of mass loss.
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The End

The End

Thank you for your attention!

Arick Shao (University of Toronto) Null Cones to Infinity May 22, 2013 43 / 1


	Introduction
	Elements of Mathematical GR
	Explicit and Near-Explicit Solutions
	ADM and Bondi Mass
	The Main Problem

	Geometry of Null Cones
	Geodesic Foliations
	Connection and Curvature
	Some Important Quantities
	Schwarzschild Spacetimes
	The Main Goals

	Result I. Control of the Null Geometry
	The First Main Theorem
	Analysis of Null Cones
	The Renormalized System
	The Limiting Geometry
	Technical Simplifications

	Result II. Controlling Bondi Mass
	Asymptotically Round Families
	Changes of Foliations
	Finding the Foliation
	The Final Estimates

	The End

