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Section 1

Background

Arick Shao (QMUL) Controllability of Waves 3 December, 2020



Background Problem Statement

Wave Equations

Main operators of interest:

@ Wave operator (in 1+ n dimensions):
O:=—-032+A,.
@ With lower-order terms:

L:=0+Vx+V, Vit,x) eR,  X(tx) e R™".

Q. Why study wave equations?
@ Prototypical example of hyperbolic PDEs.

@ Many fundamental equations of physics contain wave behaviour.

o Euler (fluids), Maxwell (electromagnetism), Einstein (gravity).
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Background = Problem Statement

Solving Wave Equations

Wave equations on bounded domains:
@ Spatial domain: Q C R" (open, smooth boundary).
@ |Initial/final times: T_ < T,.
@ Wave equation: £Ld = Fon [T, T{] x Q.

Well-posedness. Unique solution ¢, given:
@ Initial data: (¢, 0¢d)|e=7 .
@ Boundary data: |77, xa0 or Ovl(7_ 7, )x00- (4,a9)=(¢,4$))
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Background = Problem Statement

A More Proactive Approach

Tet
(ba9-4)

Question (Control)

Can we control what happens to ¢ 7 \//’/ﬂ
@ Given initial state (§, 0:d)l=7_ = (dg, P71 )-..

@ ...achieve final state (b, 3:0)le=1, = (g, dT).

In real-world situations:
@ We do not have unlimited powers.

@ Can only directly affect part of system (the control).

(6.a9)-(6,4)
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Background = Problem Statement

Interior and Boundary Control

Boundary control: Steer ¢ through boundary data.
Lb=0, TC(T.,T.) xoQ.

@ Dirichlet: ¢l(7_ 7, )x00 = Xrda.

@ Neumann: 0vo|(7_,7,)x00 = Xrdn

Interior control: Steer ¢ through forcing term.

Lo=X0wG wCI(T,Ti)xQ

Here, focus on Dirichlet boundary control. |
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Background = Problem Statement

Exact Controllability

(6.29)=(6,4) 7
Problem (Exact Controllability) e

/77
Given: | Control region | T C (T, T;) x Q) | \_”/\

Goal: V initial/final data (d)g[,d)f) € L2(Q) x H(Q):
@ Find g € L2(T), such that solution of...

o ... wave equation: L&t 1,1x0 =0... b=y

o ... initial data: (¢, 0:d)l=7_ = (bg, 7).
e ... boundary data: ¢|(7_ 1, )x00 = dd...

® ... satisfies (b, 0:d)le=7,. = (dg, bT).

1/
CXOECRD

Q. Can solutions be controlled via Dirichlet boundary data? J
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Background = Problem Statement

Basic Observations

Observation. Can take (¢J,d7) =0 or (by,d;) =0.
@ Null controllability.

@ (From time-reversibility of wave equation.)

From now on, assume (¢, d;) = 0.

Observation. Finite speed of propagation.

@ Information from 0Q) needs time to travel to all of Q.

@ Fundamental lower bound for T — T_.
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Background  Survey of Methods

The Adjoint Problem

(P1) Consider linear operator
LOl(m_ 7. )x0 =0,
($,0:)le=7_ = (0,0),

bl 7 x00 = da-

S: LA = L2(Q) x H(Q),
S(da) = (b, at¢)|t:T+~

@ Goal: Show S has full range.

(P2) Adjoint of S: LYt 7.)xa =0,

ST LP(Q) x Hy(Q) — L2(1), (B, de)leer, = (W, W),
5*(11’1+,1P3) = avll)h“- 1l»"(T_,TjL)xaQ =0.
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Background Survey of Methods

Observability and Controllability

By duality and closed range theorem:
@ Controllable & S surjective & ||&]] < ||S™E|.

@ Last statement known as observability inequality:

H(lbaazll’)(Tf)HHleQ S Havll’HLQ(r), 1ML’T,,T¢ yxa0 = 0.

Main goal. Prove observability inequality. )

(J.-L. Lions) Hilbert uniqueness method (HUM)
@ Modern machinery for observability = controllability.
@ Methods for generating control ¢4 (e.g. as minimizer of functional).

@ Can find ¢pg minimizing L2(T")-norm.
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Background Survey of Methods

Methods for Observability |

l. Fourier series methods
@ Applies to one spatial dimension: (—9? + 92 + ) = 0.

@ Apply variants of Ingham’s inequality on Fourier side.

Theorem ( )

Consider sequence (Ap)ncz of real numbers, with
Ant1—An >y >0, ne€Z.

If T> 3 then for any sequence (cp)ncz, we have

2
dt.

T

2 Ant

§ |Cn| ST,VJ E che"
n =T n
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Background Survey of Methods

Methods of Observability Il

Il. Multiplier methods
@ Applies to all dimensions: [hp = 0.
@ Idea. Integrate by parts the RHS of

0 :J O Sib.
[T, THIxQ

Theorem ( )
Fix xo € R", and assume ¢ ﬂ €r

T — T_ >2 sup |x— xol. X ‘L\l
x€0Q

Then, for L := [, observability holds with:

M= (T_,T:) x{x€0Q|(x—x)-v >0}
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Background Survey of Methods

Methods for Observability Il

lll. Carleman estimates
@ Most robust technique.

@ Extends multiplier methods to general L.

Weighted (spacetime) integral estimates, with free real parameter.
1 Vesbllz + €Wl SA? M T2 +...,  A>1

@ Take A large = absorb lower-order terms.

Theorem ( )

Previous theorem holds for general L.

@ But, for technical reasons, also requires xo & Q.
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Background Survey of Methods

Methods for Observability 1V

IV. Microlocal methods ﬂ
@ Most precise, optimal results (w.r.t. control region). I

@ Must also assume X, V analytic in t.

Theorem ( )

Observability on ' & geometric control condition.

e

@ Each bicharacteristic (null geodesic) in [T—, T.] x Q hitsT.

@ Bicharacteristics reflect off boundary via geometric optics.

@ (Le Rousseau—Lebeau—Terpolilli-Trélat) Time-dependent T. { 4
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Moving Boundaries

Section 2

Moving Boundaries
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Moving Boundaries = The Problem Statement

Time-Dependent Domains

Question (Main Question)

What about time-dependent domains?

U= |J (9xao.

T_<t<Ty

(6a8)=(44) 7

7% /7

@ U has moving boundary:

U= |J (1 x00q).
T_<t<Ty
Cad

@ Can we still prove control results?

Assume boundary U}, is timelike: (4.28)=(447)

@ Uy “moves at less than wave/characteristic speed”.

@ U, appropriate for boundary data.
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Moving Boundaries = The Problem Statement

Controllability Revisited

®a9)=(g4n?
controllability) s

Problem (Exact

Given: Control region Y C Up.

Goal: Y initial/final data (¢F, dF) € L2 x H '
@ Find g € L?(Y) that takes solution ¢...
@ ... from initial state (¢, 0:d)|—7_ = (dg, D7 )... "
® ... to final state (¢, 0:d)le—7. = (dg, d7). )

(6.49)% (6,4

HUM. Exact controllability = observability for adjoint system:
(W, 00T )l xr2 S 10Vl 2y, Wl = 0.
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Moving Boundaries = The Problem Statement

Some Existing Results

Existing literature is sparse.

@ Cannot use microlocal methods.

General n: (Only for £ =0).
@ (Bardos—Chen) U expanding.

@ (Miranda) U self-similar, asymptotically cylindrical.

n = 1: Recent works (only for £ = [J).
@ Uy, = two lines (optimal), line + curve.
@ (Cui—Jiang-Wang, Sun—-Li-Lu, Wang—He-Li, ...)

Missing: General results in any dimension. J
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Moving Boundaries = The Problem Statement

The Main Estimate (Rough Statement)

Theorem ( )

Consider general L on moving domain U. Fix xo € R", and assume

T, —T->R,+R_, Ry = sup [x — xo].
x€UpN{t=T1}

Then, we have observability (for adjoint equation):

100, 3p) (T 2 sj 9P,
Yy

The observation region ) satisfies:

@ YV is a “much smaller”, time-dependent set.

Exact controllability (for original equation), with control region ).
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Moving Boundaries = The Problem Statement

Some Remarks

First result for general timelike U/, and general L.
@ Improves existing Carleman/multiplier results for static U.
o Y “smaller than” {(x— x0) - v > 0}.
@ Xxp can be outside or inside of domain.
@ (Achieves GCC only when n=1.)

Similar results for interior controllability:

@ (Vaibhav Jena, 2020) Static domains, more regular controls.

@ (Vaibhav Jena, in preparation) Time-dependent domains, less regular controls.
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Moving Boundaries = The Problem Statement

Plan for the Proof

I. Time-dependent domains.
@ Consider model problem £ = [l.
@ Multiplier methods.

Il. General operators L.

@ Proof of Carleman estimates.

1. Carleman = observability.

@ Exterior/interior observability.
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Moving Boundaries A Preliminary Multiplier Result

Classical Multiplier Result

First, recall special case of free waves (£ := 0).

@ Main step: Integrate by parts, starting with
=1
O:J OWS%, 8% = (x—x0) - Vb + =1
[T, T4IxQ 2
@ Combine with energy conservation =
1
(T+ =T >S(Ti)g2R-€(Ti)+§J [ov P,
(T, T4+)x30Q
@ £(t) = %f{t}xﬂ |V e[ @ Green= T, —T_ > 2R
@ R=s5up,coq IX— Xol. ° =
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Moving Boundaries A Preliminary Multiplier Result

Adaptation to Time-Dependent Setting

0. Main issue in time-dependent domains:
@ Conservation of energy no longer holds.

@ Integrations by parts, energy estimates = additional boundary terms.

1. View in terms of spacetime (Minkowski) geometry.

@ Minkowski spacetime:
R g), g=—df +dx+...dx.

@ Replace reference point xg by reference event (to, xo).
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Moving Boundaries A Preliminary Multiplier Result

The Lorentzian Viewpoint

2. Replace classical multiplier S% by

n—1
2

S = [(x—x0) - Vb + (t— to) 0r] + V.

@ 0:part: corresponds to energy conservation arguments.

3. Apply Lorentzian version of integration by parts:

@ N: outward-pointing Minkowksi unit normal to Up.

@ (Euclidean normal, with t-component reversed.)
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Moving Boundaries A Preliminary Multiplier Result

The Multiplier Result

Theorem ( )

/7 /fr

Consider £ := O on moving domain U. Assume

T.—T_->R.+R_, Ry = sup [x — xo].
x€UpN{t=T4}

Then, we have observability (for adjoint problem): o %)

1, 3ep) (T ) P 12 gJ VO,
Yy

e YV =U,N{Nf >0} r
@ MN: outward-pointing Minkowski unit normal on Up.
@ fy:= %HX—X()‘Z — (t— ty)?], where...

@ ...ty satisfiesto— T > R_ and T, —ty > R..
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Moving Boundaries A Preliminary Multiplier Result

Some Remarks

Proof is ~ 2 pages. )

n = 1: Recovers all existing results, and in full generality.
@ Recovers optimal T, — T (from GCC) for all U.

General n: Handles general domains /.

@ Requires much smaller T,- — T_ than before (optimal in many cases).

{Nfy > 0} generalises {(x— xp) - v > 0}:

U time-independent Nfy>0& (x—x0)-v>0
U "expanding” from tp Need smaller )
U "contracting” from to Need larger )
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Moving Boundaries Improved Carleman Estimates

Return to Carleman Estimates

Q. What about general L£?

Goal. Establish global Carleman estimate:

1€ (Vetb, W22 < A2 TIIE + 1| M2

~

)

Integrate by parts the expression
@ Tws.iemw)

@ Multiplier estimate for e *F and * := ).
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Moving Boundaries Improved Carleman Estimates

The Carleman Weight

The weight e is constructed from fo: (i Not quite true)
@ f=zlx—xl* — (t—10)’.

1/2
Y e)\F — fo)\ e2)\bf0 )

Level sets of fy are hyperboloids:
@ fo =0: null cone about (to, x0).

@ fo = c > 0: one-sheeted hyperboloids.

Dy := {fo > 0}: null cone exterior. J
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Moving Boundaries Improved Carleman Estimates

A Novel Feature

New. €\f vanishes at fy = 0.
@ No boundary terms at f; = 0.

@ Estimate supported on Dy = {fo > 0}.

This (roughly) yields the Carleman estimate:

€ (Vesth, W) 12 0snpy) S A 2N TN iy +J EMNNR)IN .

UNDy
@ Energy inequalities = observability, with
Y :=UyN{Nfo > 0} N Dy.

@ (Classical Carleman methods: Y = U, N{N'f > 0}.)
@ Extra restriction of ) to Dy.
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Moving Boundaries Improved Carleman Estimates

Some Pictures

@ left: Up. @ Purple: Up N Dy.
@ Red dot: (tg,xp). @ Green: Y :=U,N{Nfy > 0} N Dy.
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Moving Boundaries Improved Carleman Estimates

A Pseudoconvexity Issue

Main requirement for Carleman estimates is pseudoconvexity.

@ Level sets of fy (barely) fail to be pseudoconvex.
v

Thus, can only obtain a degenerate Carleman estimate:

1122 i) S A2 TN i) +J NN PP

U,NDy

@ No H'-control for 1y = no observability.

@ Thus, cannot build weight € from f.
v

Idea. Perturb fy — f; such that...

@ ... level sets of f. are pseudoconvex.
v
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Moving Boundaries Improved Carleman Estimates

The Classical Approach

Classical Carleman observability results:

e o= %“X*XOF —(1—&)(t—10)?.

@ Hyperboloids for waves with slower speed.

Drawback. Not well-adapted to characteristics of wave equation.
@ f. =0 no longer the null cone about (to, xo)-

@ Cannot obtain Carleman estimates supported on Dy.

Drawback. Only works for (tg, xg) & U.
@ (Arises from dealing with the region {fy < 0}.)
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Moving Boundaries Improved Carleman Estimates

A Conformal Viewpoint

New idea. Perturb geometry rather than fy:
@ Consider “warped” Minkowski metric:
ge = —df? +dP + (r+2¢6)%Y, (to,x0) =0, €>0.

@ Level sets of fy pseudoconvex w.r.t. g.-geometry.

Observation. (Dy, g), (Do, g:) conformally related.
@ Pseudoconvexity is conformally invariant.

@ f. := pullback of fy through conformal isometry.

Strategy. 2 steps for proof of Carleman estimate:

@ Prove “warped” Carleman estimate on (Do, g¢).

@ Pull “warped” Carleman estimate back to (Do, g).
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Moving Boundaries Improved Carleman Estimates

Carleman to Observability

Idea. Carleman + energy estimate = observability.
@ But, Carleman weight €' vanishes on boundary of D.

@ Cannot capture energy where € vanishes.

Exterior observability. (g, xp) € U.

@ Cross-sections of U near t = ty satisfy e’ > 1.

@ = Carleman controls energy near t = to.
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Moving Boundaries Improved Carleman Estimates

Interior Observability

Interior observability. (tp,xg) € U.

AF

@ €' vanishes at every time in U.

@ Carleman does not control energy at any time.

Idea. Use two Carleman estimates:
@ Centred at nearby points (to, x0), (to,x1).

@ Sum of estimates controls energy near t = to.
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Moving Boundaries Improved Observability

The Main Observability Estimate

Theorem ( )

Consider general L on moving domain U. Assume

T.—T_>R. +R_, Ry = sup [x — xo].

x€EUpN{t=T4}

Then, we have observability (for adjoint problem):

11, 9e) (T B 12 5J NP,
Yy

@ Y: any open subset of boundary with

Y DU, N{Nfy > 0}N Dy.

@ fy and ty as before (to — T— > R_ and T, —to > R).

Remark. Any such Y suffices:

@ Perturbation f; — f; can be arbitrarily small.

v
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Moving Boundaries Improved Observability

Conclusions

1. Controllability for waves on time-dependent domains.
@ First general result.

@ Applies to general ¢/ and (non-analytic) L.

2. Best known results using Carleman methods.
@ Smaller control region (restriction to null cone exterior).

@ Leads to improved results for time-independent domains.

3. Proof uses geometric ideas and intuitions.

@ Extends to geometric wave equations.
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Moving Boundaries Improved Observability

Hyperbolic PDEs

What about other (2nd order) hyperbolic PDE?

—32 + A, = i+ ) a'0;

1<ij<n

@ Or, what about geometric wave equations on manifolds?

Classical methods already extend to time-independent settings:
U=RxQ, a’=al(x).

@ Many results using multiplier, Carleman, and microlocal methods.
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Moving Boundaries Improved Observability

Outlook and Upcoming Work

What about time-dependent settings: a¥ = al(t,x)?

@ (In other words, geometric waves on Lorentzian manifolds.)

@ Open question, not explored in existing literature.

Idea. Geometric tools can be used to treat this problem.
@ Use methods described for previous theorem...

@ ...but on Lorentzian geometry defined by the PDE.

@ (Joint work in progress with Vaibhav Jena.)
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