On Controllability of Waves and Geometric Carleman Estimates #### Arick Shao Queen Mary University of London Webinar on PDEs and Related Areas 3 December, 2020 ### Section 1 Background ### Wave Equations #### Main operators of interest: • Wave operator (in 1 + n dimensions): $$\Box := -\partial_t^2 + \Delta_x.$$ With lower-order terms: $$\mathcal{L} := \Box + \nabla_X + V$$, $V(t, x) \in \mathbb{R}$, $X(t, x) \in \mathbb{R}^{1+n}$. - Q. Why study wave equations? - Prototypical example of hyperbolic PDEs. - Many fundamental equations of physics contain wave behaviour. - Euler (fluids), Maxwell (electromagnetism), Einstein (gravity). ### Solving Wave Equations #### Wave equations on bounded domains: - Spatial domain: $\Omega \subseteq \mathbb{R}^n$ (open, smooth boundary). - Initial/final times: $T_- < T_+$. - Wave equation: $\mathcal{L}\phi = F$ on $[T_-, T_+] \times \Omega$. #### **Well-posedness.** Unique solution ϕ , given: - Initial data: $(\phi, \partial_t \phi)|_{t=T_-}$. - Boundary data: $\phi|_{(T_-,T_+)\times\partial\Omega}$ or $\partial_{\nu}\phi|_{(T_-,T_+)\times\partial\Omega}$. ### A More Proactive Approach #### Question (Control) Can we control what happens to ϕ ? - Given initial state $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$ - ...achieve final state $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$. #### In real-world situations: - We do not have unlimited powers. - Can only directly affect part of system (the control). ### Interior and Boundary Control Boundary control: Steer ϕ through boundary data. $$\mathcal{L}\phi = 0$$, $\Gamma \subset (T_-, T_+) \times \partial\Omega$. - Dirichlet: $\phi|_{(T_-,T_+)\times\partial\Omega}=\chi_\Gamma\phi_d$. - Neumann: $\partial_{\nu} \phi|_{(T_{-},T_{+}) \times \partial \Omega} = \chi_{\Gamma} \phi_{n}$. **Interior control**: Steer φ through forcing term. $$\mathcal{L}\Phi = \chi_{\omega}G$$, $\omega \subset (T_-, T_+) \times \Omega$. Here, focus on Dirichlet boundary control. ### **Exact Controllability** ### Problem (Exact Controllability) **Given:** Control region $\Gamma \subseteq (T_-, T_+) \times \partial \Omega$ **Goal:** \forall *initial/final data* $(\varphi_0^{\pm}, \varphi_1^{\pm}) \in L^2(\Omega) \times H^{-1}(\Omega)$: - Find $\phi_d \in L^2(\Gamma)$, such that solution of... - ... wave equation: $\mathcal{L}\phi|_{[T_-,T_+]\times\Omega}=0...$ - ... initial data: $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$ - ... boundary data: $\phi|_{(T_-,T_+)\times \partial\Omega}=\phi_d$... - ... satisfies $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$. Q. Can solutions be controlled via Dirichlet boundary data? ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○ 7/39 ### **Basic Observations** **Observation.** Can take $(\varphi_0^+, \varphi_1^+) = 0$ or $(\varphi_0^-, \varphi_1^-) = 0$. - Null controllability. - (From time-reversibility of wave equation.) From now on, assume $(\varphi_0^-, \varphi_1^-) = 0$. #### Observation. Finite speed of propagation. - Information from $\partial\Omega$ needs time to travel to all of Ω . - Fundamental lower bound for $T_+ T_-$. ## The Adjoint Problem ### (P1) Consider linear operator $$S: L^2(\Gamma) \to L^2(\Omega) \times \mathcal{H}^{-1}(\Omega),$$ $S(\phi_d) = (\phi, \partial_t \phi)|_{t=T_+}.$ • Goal: Show S has full range. ### **(P2)** Adjoint of *S*: $$S^*: L^2(\Omega) \times \mathcal{H}^1_0(\Omega) \to L^2(\Gamma),$$ $$S^*(\psi_1^+, \psi_0^+) = \partial_{\nu} \psi|_{\Gamma}.$$ $$\begin{split} \mathcal{L}\varphi|_{(\mathcal{T}_{-},\mathcal{T}_{+})\times\Omega} &= 0,\\ (\varphi,\partial_{t}\varphi)|_{t=\mathcal{T}_{-}} &= (0,0),\\ \varphi|_{(\mathcal{T}_{-},\mathcal{T}_{+})\times\partial\Omega} &= \varphi_{d}. \end{split}$$ $$\begin{split} \mathcal{L}^*\psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\Omega} &= 0,\\ (\psi, \vartheta_t\psi)|_{t=\mathcal{T}_+} &= (\psi_0^+, \psi_1^+),\\ \psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\vartheta\Omega} &= 0. \end{split}$$ ### Observability and Controllability #### By duality and closed range theorem: - Controllable $\Leftrightarrow S$ surjective $\Leftrightarrow \|\xi\| \lesssim \|S^*\xi\|$. - Last statement known as observability inequality: $$\|(\psi, \partial_t \psi)(T_+)\|_{H^1 \times L^2} \lesssim \|\partial_\nu \psi\|_{L^2(\Gamma)}, \qquad \psi|_{(T_-, T_+) \times \partial\Omega} = 0.$$ #### Main goal. Prove observability inequality. ### (J.-L. Lions) Hilbert uniqueness method (HUM) - Modern machinery for observability ⇒ controllability. - Methods for generating control ϕ_d (e.g. as minimizer of functional). - Can find ϕ_d minimizing $L^2(\Gamma)$ -norm. ### Methods for Observability I #### I. Fourier series methods - Applies to one spatial dimension: $(-\partial_t^2 + \partial_x^2 + \alpha)\psi = 0$. - Apply variants of Ingham's inequality on Fourier side. ### Theorem (Ingham) Consider sequence $(\lambda_n)_{n\in\mathbb{Z}}$ of real numbers, with $$\lambda_{n+1} - \lambda_n \ge \gamma > 0, \qquad n \in \mathbb{Z}.$$ If $T > \frac{\pi}{\nu}$, then for any sequence $(c_n)_{n \in \mathbb{Z}}$, we have $$\sum_{n} |c_{n}|^{2} \lesssim_{T,\gamma} \int_{-T}^{T} \left| \sum_{n} c_{n} e^{i\lambda_{n}t} \right|^{2} dt.$$ Arick Shao (QMUL) ### Methods of Observability II #### II. Multiplier methods - Applies to all dimensions: $\Box \psi = 0$. - Idea. Integrate by parts the RHS of $$0 = \int_{[T_-, T_+] \times \Omega} \Box \psi \, \mathcal{S}_* \psi.$$ ### Theorem (Ho, Lions, ...) Fix $x_0 \in \mathbb{R}^n$, and assume $$T_+ - T_- > 2 \sup_{x \in \partial \Omega} |x - x_0|.$$ Then, for $\mathcal{L} := \square$, observability holds with: $$\Gamma := (T_-, T_+) \times \{x \in \partial \Omega \mid (x - x_0) \cdot \gamma > 0\}.$$ ### Methods for Observability III #### III. Carleman estimates - Most robust technique. - Extends multiplier methods to general \mathcal{L} . Weighted (spacetime) integral estimates, with free real parameter. $$\|e^{\lambda F}\nabla_{t,x}\psi\|_{L^2}^2+\|e^{\lambda F}\psi\|_{L^2}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2}^2+\dots, \qquad \lambda\gg 1.$$ • Take λ large \Rightarrow absorb lower-order terms. ### Theorem (Lasiecka-Triggiani-Zhang, Zhang, ...) Previous theorem holds for general L. • But, for technical reasons, also requires $x_0 \notin \bar{\Omega}$. ### Methods for Observability IV #### IV. Microlocal methods - Most precise, optimal results (w.r.t. control region). - Must also assume X, V analytic in t. ### Theorem (Bardos-Lebeau-Rauch, Burq, ...) Observability on $\Gamma \Leftrightarrow geometric\ control\ condition$. - Each bicharacteristic (null geodesic) in $[T_-, T_+] \times \Omega$ hits Γ . - Bicharacteristics reflect off boundary via geometric optics. - (Le Rousseau-Lebeau-Terpolilli-Trélat) Time-dependent Γ. ### Section 2 ### Moving Boundaries ### Time-Dependent Domains #### Question (Main Question) What about time-dependent domains? $$\mathcal{U} = \bigcup_{T_- < \tau < T_+} (\{\tau\} \times \Omega_\tau).$$ • *U* has moving boundary: $$\mathcal{U}_b = \bigcup_{T_- < \tau < T_+} (\{\tau\} \times \delta \Omega_\tau).$$ • Can we still prove control results? #### Assume boundary \mathcal{U}_b is timelike: - \mathcal{U}_b "moves at less than wave/characteristic speed". - \mathcal{U}_b appropriate for boundary data. ### Controllability Revisited #### Problem (Exact Dirichlet boundary controllability) **Given:** Control region $\mathcal{Y} \subseteq \mathcal{U}_h$. **Goal:** \forall *initial/final data* $(\phi_0^{\pm}, \phi_1^{\pm}) \in L^2 \times H^{-1}$: - Find $\phi_d \in L^2(\mathcal{Y})$ that takes solution $\phi_{...}$ - ... from initial state $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$ - ... to final state $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$. HUM. Exact controllability \Rightarrow observability for adjoint system: $$\|(\psi, \mathfrak{d}_t \psi)(T_+)\|_{H^1 \times L^2} \lesssim \|\mathfrak{d}_{\nu} \psi\|_{L^2(\mathcal{V})}, \qquad \psi|_{\mathcal{U}_b} = 0.$$ ### Some Existing Results #### Existing literature is sparse. Cannot use microlocal methods. ### General n: (Only for $\mathcal{L} = \square$). - ullet (Bardos-Chen) ${\cal U}$ expanding. - ullet (Miranda) ${\cal U}$ self-similar, asymptotically cylindrical. n=1: Recent works (only for $\mathcal{L}=\square$). - $\mathcal{U}_b = \text{two lines (optimal)}$, line + curve. - (Cui–Jiang–Wang, Sun–Li–Lu, Wang–He–Li, ...) Missing: General results in any dimension. ### The Main Estimate (Rough Statement) ### Theorem (S., 2019) Consider general \mathcal{L} on moving domain \mathcal{U} . Fix $x_0 \in \mathbb{R}^n$, and assume $$T_+ - T_- > R_+ + R_-$$, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$. Then, we have observability (for adjoint equation): $$\|(\psi, \mathfrak{d}_t \psi)(T_{\pm})\|_{H^1 \times L^2}^2 \lesssim \int_{\mathcal{Y}} |\mathfrak{d}_{\nu} \psi|^2.$$ The observation region \mathcal{Y} satisfies: • *y* is a "much smaller", time-dependent set. #### Corollary Exact controllability (for original equation), with control region \mathcal{Y} . ### Some Remarks #### First result for general timelike \mathcal{U}_b and general \mathcal{L} . - ullet Improves existing Carleman/multiplier results for static ${\cal U}.$ - \mathcal{Y} "smaller than" $\{(x-x_0)\cdot \nu > 0\}$. - x_0 can be outside or inside of domain. - (Achieves GCC only when n = 1.) #### Similar results for interior controllability: - (Vaibhav Jena, 2020) Static domains, more regular controls. - (Vaibhav Jena, in preparation) Time-dependent domains, less regular controls. 4□ > 4□ > 4 = > 4 = > = 9 < ○</p> ### Plan for the Proof - **I.** Time-dependent domains. - Consider model problem $\mathcal{L} = \square$. - Multiplier methods. - **II.** General operators \mathcal{L} . - Proof of Carleman estimates. - III. Carleman \Rightarrow observability. - Exterior/interior observability. ### Classical Multiplier Result First, recall special case of free waves $(\mathcal{L} := \square)$. • Main step: Integrate by parts, starting with $$0 = \int_{[T_-,T_+]\times\Omega} \Box \psi \, \mathcal{S}^0_* \psi, \qquad \mathcal{S}^0_* \psi := (x-x_0) \cdot \nabla_x \psi + \frac{n-1}{2} \psi.$$ Combine with energy conservation ⇒ $$(T_+ - T_-)\mathcal{E}(T_\pm) \leq 2R \cdot \mathcal{E}(T_\pm) + \frac{1}{2} \int_{(T_-, T_+) \times \partial\Omega} [(\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{v}] |\partial_{\mathbf{v}} \psi|^2.$$ - $\mathcal{E}(t) = \frac{1}{2} \int_{\{t\} \times \Omega} |\nabla_{t,x} \psi|^2$. - $R = \sup_{x \in \partial \Omega} |x x_0|$. • Green $$\Rightarrow T_+ - T_- > 2R$$. • Orange $$\Rightarrow \Gamma := \{(x - x_0) \cdot v > 0\}.$$ ### Adaptation to Time-Dependent Setting - **0.** Main issue in time-dependent domains: - Conservation of energy no longer holds. - Integrations by parts, energy estimates ⇒ additional boundary terms. - 1. View in terms of spacetime (Minkowski) geometry. - Minkowski spacetime: $$(\mathbb{R}^{1+n}, g), \qquad g := -dt^2 + dx_1^2 + \dots dx_n^2.$$ • Replace reference point x_0 by reference event (t_0, x_0) . ◆ロト ◆個ト ◆差ト ◆差ト を めなべ ### The Lorentzian Viewpoint **2.** Replace classical multiplier $\mathcal{S}^0_*\psi$ by $$\mathcal{S}_*\psi := \left[(x - x_0) \cdot \nabla_x \psi + (t - t_0) \, \partial_t \psi \right] + \frac{n - 1}{2} \psi.$$ - ∂_t -part: corresponds to energy conservation arguments. - 3. Apply Lorentzian version of integration by parts: - \mathcal{N} : outward-pointing Minkowksi unit normal to \mathcal{U}_b . - (Euclidean normal, with t-component reversed.) ### The Multiplier Result ### Theorem (S., 2019) Consider $\mathcal{L} := \square$ on moving domain \mathcal{U} . Assume $$T_+ - T_- > R_+ + R_-$$, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$. Then, we have observability (for adjoint problem): $$\|(\psi, \vartheta_t \psi)(\mathit{T}_\pm)\|_{\mathit{H}^1 \times \mathit{L}^2}^2 \lesssim \int_{\mathcal{V}} |\mathcal{N} \psi|^2.$$ - N: outward-pointing Minkowski unit normal on Ub. - $f_0 := \frac{1}{4}[|x-x_0|^2-(t-t_0)^2]$, where... - ... t_0 satisfies $t_0 T_- > R_-$ and $T_+ t_0 > R_+$. Arick Shao (QMUL) ### Some Remarks #### Proof is ≈ 2 pages. n = 1: Recovers all existing results, and in full generality. • Recovers optimal $T_+ - T_-$ (from GCC) for all \mathcal{U} . General n: Handles general domains \mathcal{U} . • Requires much smaller $T_+ - T_-$ than before (optimal in many cases). $$\{\mathcal{N}f_0 > 0\}$$ generalises $\{(x - x_0) \cdot \nu > 0\}$: | ${\cal U}$ time-independent | $\mathcal{N} f_0 > 0 \Leftrightarrow (x - x_0) \cdot \nu > 0$ | |--------------------------------------|---| | \mathcal{U} "expanding" from t_0 | Need smaller ${\mathcal Y}$ | | ${\cal U}$ "contracting" from t_0 | Need larger ${\mathcal Y}$ | 4 L P 4 B P 4 E P 4 E P 9 C *) V (*) ### Return to Carleman Estimates **Q.** What about general \mathcal{L} ? **Goal.** Establish global Carleman estimate: $$\| e^{\lambda F}(\nabla_{t,x}\psi,\psi) \|_{L^2}^2 \lesssim \lambda^{-2} \| e^{\lambda F} \square \psi \|_{L^2}^2 + \| e^{\lambda F} \mathcal{N} \psi \|_{L^2(\mathcal{Y})}^2.$$ Integrate by parts the expression $$\int (e^{\lambda F} \Box \psi) \mathcal{S}_*(e^{\lambda F} \psi)$$ • Multiplier estimate for $e^{\lambda F} \Box e^{-\lambda F}$ and $\psi^{\star} := e^{\lambda F} \psi$. ### The Carleman Weight The weight $e^{\lambda F}$ is constructed from f_0 : († Not quite true) • $$f_0 = \frac{1}{4}[|x-x_0|^2 - (t-t_0)^2].$$ $\bullet \ e^{\lambda F} := f_0^{\lambda} \ e^{2\lambda b f_0^{1/2}}.$ Level sets of f_0 are hyperboloids: - $f_0 = 0$: null cone about (t_0, x_0) . - $f_0 = c > 0$: one-sheeted hyperboloids. - $\mathcal{D}_0 := \{f_0 > 0\}$: null cone exterior. ### A Novel Feature **New.** $e^{\lambda F}$ vanishes at $f_0 = 0$. - No boundary terms at $f_0 = 0$. - Estimate supported on $\mathcal{D}_0 = \{f_0 > 0\}$. This (roughly) yields the Carleman estimate: $$\|e^{\lambda F}(\nabla_{t,x}\psi,\psi)\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2+\int_{\mathcal{U}_h\cap\mathcal{D}_0}e^{2\lambda F}(\mathcal{N}\mathit{f}_0)|\mathcal{N}\psi|^2.$$ Energy inequalities ⇒ observability, with $$\mathcal{Y} := \mathcal{U}_b \cap \{ \mathcal{N} f_0 > 0 \} \cap \mathcal{D}_0.$$ - (Classical Carleman methods: $\mathcal{Y} \approx \mathcal{U}_b \cap \{\mathcal{N}f_0 > 0\}$.) - Extra restriction of \mathcal{Y} to \mathcal{D}_0 . ### Some Pictures - Left: \mathcal{U}_b . - Red dot: (t_0, x_0) . - Purple: $\mathcal{U}_b \cap \mathcal{D}_0$. - $\bullet \ \, \text{Green:} \,\, \mathcal{Y}:=\mathcal{U}_b\cap \{\mathcal{N}\textit{f}_0>0\}\cap \mathcal{D}_0.$ ### A Pseudoconvexity Issue #### Main requirement for Carleman estimates is pseudoconvexity. • Level sets of f_0 (barely) fail to be pseudoconvex. Thus, can only obtain a degenerate Carleman estimate: $$\|e^{\lambda F}\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2+\int_{\mathcal{U}_b\cap\mathcal{D}_0}e^{2\lambda F}(\mathcal{N}\mathit{f}_0)|\mathcal{N}\psi|^2.$$ - No H^1 -control for $\psi \Rightarrow$ no observability. - Thus, cannot build weight $e^{\lambda F}$ from f_0 . **Idea.** Perturb $f_0 \rightarrow f_{\varepsilon}$ such that... • ... level sets of f_{ε} are pseudoconvex. 4 D > 4 B > 4 B > 4 B > 9 Q P ### The Classical Approach #### Classical Carleman observability results: $$f_{\varepsilon} := \frac{1}{4}[|x-x_0|^2 - (1-\varepsilon)(t-t_0)^2].$$ Hyperboloids for waves with slower speed. #### **Drawback.** Not well-adapted to characteristics of wave equation. - $f_{\varepsilon} = 0$ no longer the null cone about (t_0, x_0) . - Cannot obtain Carleman estimates supported on \mathcal{D}_0 . #### **Drawback.** Only works for $(t_0, x_0) \notin \mathcal{U}$. • (Arises from dealing with the region $\{f_0 < 0\}$.) ### A Conformal Viewpoint #### **New idea.** Perturb geometry rather than f_0 : Consider "warped" Minkowski metric: $$g_\epsilon := -dt^2 + dr^2 + (r + 2\epsilon f_0)^2\mathring{\gamma}, \qquad (t_0, x_0) = 0, \quad \epsilon > 0.$$ • Level sets of f_0 pseudoconvex w.r.t. g_{ε} -geometry. **Observation.** (\mathcal{D}_0, g) , $(\mathcal{D}_0, g_{\varepsilon})$ conformally related. - Pseudoconvexity is conformally invariant. - $f_{\varepsilon} := \text{pullback of } f_0 \text{ through conformal isometry.}$ **Strategy.** 2 steps for proof of Carleman estimate: - **1** Prove "warped" Carleman estimate on $(\mathcal{D}_0, g_{\varepsilon})$. - 2 Pull "warped" Carleman estimate back to (\mathcal{D}_0, g) . ### Carleman to Observability **Idea.** Carleman + energy estimate \Rightarrow observability. - But, Carleman weight $e^{\lambda F}$ vanishes on boundary of \mathcal{D}_0 . - Cannot capture energy where $e^{\lambda F}$ vanishes. #### Exterior observability. $(t_0, x_0) \notin \mathcal{U}$. - Cross-sections of \mathcal{U} near $t=t_0$ satisfy $e^{\lambda F}\gtrsim 1$. - \Rightarrow Carleman controls energy near $t = t_0$. ### Interior Observability #### Interior observability. $(t_0, x_0) \in \mathcal{U}$. - $e^{\lambda F}$ vanishes at every time in \mathcal{U} . - Carleman does not control energy at any time. ### Idea. Use two Carleman estimates: - Centred at nearby points (t_0, x_0) , (t_0, x_1) . - Sum of estimates controls energy near $t = t_0$. ### The Main Observability Estimate ### Theorem (S., 2019) Consider general $\mathcal L$ on moving domain $\mathcal U$. Assume $$T_+ - T_- > R_+ + R_-$$, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$. Then, we have observability (for adjoint problem): $$\|(\psi, \mathfrak{d}_t \psi)(T_{\pm})\|_{H^1 \times L^2}^2 \lesssim \int_{\mathcal{Y}} |\mathcal{N}\psi|^2.$$ Y: any open subset of boundary with $$\mathcal{Y}\supseteq\overline{\mathcal{U}_b\cap\{\mathcal{N}\mathit{f}_0>0\}\cap\mathcal{D}_0}.$$ • f_0 and t_0 as before $(t_0 - T_- > R_- \text{ and } T_+ - t_0 > R_+)$. #### **Remark.** Any such \mathcal{Y} suffices: • Perturbation $f_0 \to f_{\varepsilon}$ can be arbitrarily small. ### Conclusions - 1. Controllability for waves on time-dependent domains. - First general result. - Applies to general \mathcal{U} and (non-analytic) \mathcal{L} . - 2. Best known results using Carleman methods. - Smaller control region (restriction to null cone exterior). - Leads to improved results for time-independent domains. - **3.** Proof uses geometric ideas and intuitions. - Extends to geometric wave equations. ### Hyperbolic PDEs What about other (2nd order) hyperbolic PDE? $$-\partial_t^2 + \Delta_x \qquad \Rightarrow \qquad -\partial_t^2 + \sum_{1 \le i, j \le n} a^{ij} \, \partial_i \partial_j.$$ Or, what about geometric wave equations on manifolds? Classical methods already extend to time-independent settings: $$\mathcal{U} := \mathbb{R} \times \Omega, \quad a^{ij} = a^{ij}(x).$$ Many results using multiplier, Carleman, and microlocal methods. ### Outlook and Upcoming Work #### Question What about time-dependent settings: $a^{ij} = a^{ij}(t, x)$? - (In other words, geometric waves on Lorentzian manifolds.) - Open question, not explored in existing literature. **Idea.** Geometric tools can be used to treat this problem. - Use methods described for previous theorem... - ...but on Lorentzian geometry defined by the PDE. - (Joint work in progress with Vaibhav Jena.)