On Controllability of Waves and Geometric Carleman Estimates

Arick Shao

Queen Mary University of London

Webinar on PDEs and Related Areas 3 December, 2020

Section 1

Background

Wave Equations

Main operators of interest:

• Wave operator (in 1 + n dimensions):

$$\Box := -\partial_t^2 + \Delta_x.$$

With lower-order terms:

$$\mathcal{L} := \Box + \nabla_X + V$$
, $V(t, x) \in \mathbb{R}$, $X(t, x) \in \mathbb{R}^{1+n}$.

- Q. Why study wave equations?
 - Prototypical example of hyperbolic PDEs.
 - Many fundamental equations of physics contain wave behaviour.
 - Euler (fluids), Maxwell (electromagnetism), Einstein (gravity).

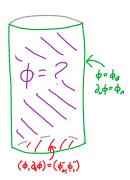
Solving Wave Equations

Wave equations on bounded domains:

- Spatial domain: $\Omega \subseteq \mathbb{R}^n$ (open, smooth boundary).
- Initial/final times: $T_- < T_+$.
- Wave equation: $\mathcal{L}\phi = F$ on $[T_-, T_+] \times \Omega$.

Well-posedness. Unique solution ϕ , given:

- Initial data: $(\phi, \partial_t \phi)|_{t=T_-}$.
- Boundary data: $\phi|_{(T_-,T_+)\times\partial\Omega}$ or $\partial_{\nu}\phi|_{(T_-,T_+)\times\partial\Omega}$.



A More Proactive Approach

Question (Control)

Can we control what happens to ϕ ?

- Given initial state $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$
- ...achieve final state $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$.

In real-world situations:

- We do not have unlimited powers.
- Can only directly affect part of system (the control).

Interior and Boundary Control

Boundary control: Steer ϕ through boundary data.

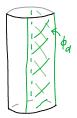
$$\mathcal{L}\phi = 0$$
, $\Gamma \subset (T_-, T_+) \times \partial\Omega$.

- Dirichlet: $\phi|_{(T_-,T_+)\times\partial\Omega}=\chi_\Gamma\phi_d$.
- Neumann: $\partial_{\nu} \phi|_{(T_{-},T_{+}) \times \partial \Omega} = \chi_{\Gamma} \phi_{n}$.

Interior control: Steer φ through forcing term.

$$\mathcal{L}\Phi = \chi_{\omega}G$$
, $\omega \subset (T_-, T_+) \times \Omega$.

Here, focus on Dirichlet boundary control.



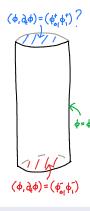
Exact Controllability

Problem (Exact Controllability)

Given: Control region $\Gamma \subseteq (T_-, T_+) \times \partial \Omega$

Goal: \forall *initial/final data* $(\varphi_0^{\pm}, \varphi_1^{\pm}) \in L^2(\Omega) \times H^{-1}(\Omega)$:

- Find $\phi_d \in L^2(\Gamma)$, such that solution of...
 - ... wave equation: $\mathcal{L}\phi|_{[T_-,T_+]\times\Omega}=0...$
 - ... initial data: $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$
 - ... boundary data: $\phi|_{(T_-,T_+)\times \partial\Omega}=\phi_d$...
- ... satisfies $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$.



Q. Can solutions be controlled via Dirichlet boundary data?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

7/39

Basic Observations

Observation. Can take $(\varphi_0^+, \varphi_1^+) = 0$ or $(\varphi_0^-, \varphi_1^-) = 0$.

- Null controllability.
- (From time-reversibility of wave equation.)

From now on, assume $(\varphi_0^-, \varphi_1^-) = 0$.

Observation. Finite speed of propagation.

- Information from $\partial\Omega$ needs time to travel to all of Ω .
- Fundamental lower bound for $T_+ T_-$.

The Adjoint Problem

(P1) Consider linear operator

$$S: L^2(\Gamma) \to L^2(\Omega) \times \mathcal{H}^{-1}(\Omega),$$

 $S(\phi_d) = (\phi, \partial_t \phi)|_{t=T_+}.$

• Goal: Show S has full range.

(P2) Adjoint of *S*:

$$S^*: L^2(\Omega) \times \mathcal{H}^1_0(\Omega) \to L^2(\Gamma),$$

$$S^*(\psi_1^+, \psi_0^+) = \partial_{\nu} \psi|_{\Gamma}.$$

$$\begin{split} \mathcal{L}\varphi|_{(\mathcal{T}_{-},\mathcal{T}_{+})\times\Omega} &= 0,\\ (\varphi,\partial_{t}\varphi)|_{t=\mathcal{T}_{-}} &= (0,0),\\ \varphi|_{(\mathcal{T}_{-},\mathcal{T}_{+})\times\partial\Omega} &= \varphi_{d}. \end{split}$$

$$\begin{split} \mathcal{L}^*\psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\Omega} &= 0,\\ (\psi, \vartheta_t\psi)|_{t=\mathcal{T}_+} &= (\psi_0^+, \psi_1^+),\\ \psi|_{(\mathcal{T}_-,\mathcal{T}_+)\times\vartheta\Omega} &= 0. \end{split}$$

Observability and Controllability

By duality and closed range theorem:

- Controllable $\Leftrightarrow S$ surjective $\Leftrightarrow \|\xi\| \lesssim \|S^*\xi\|$.
- Last statement known as observability inequality:

$$\|(\psi, \partial_t \psi)(T_+)\|_{H^1 \times L^2} \lesssim \|\partial_\nu \psi\|_{L^2(\Gamma)}, \qquad \psi|_{(T_-, T_+) \times \partial\Omega} = 0.$$

Main goal. Prove observability inequality.

(J.-L. Lions) Hilbert uniqueness method (HUM)

- Modern machinery for observability ⇒ controllability.
- Methods for generating control ϕ_d (e.g. as minimizer of functional).
- Can find ϕ_d minimizing $L^2(\Gamma)$ -norm.

Methods for Observability I

I. Fourier series methods

- Applies to one spatial dimension: $(-\partial_t^2 + \partial_x^2 + \alpha)\psi = 0$.
- Apply variants of Ingham's inequality on Fourier side.

Theorem (Ingham)

Consider sequence $(\lambda_n)_{n\in\mathbb{Z}}$ of real numbers, with

$$\lambda_{n+1} - \lambda_n \ge \gamma > 0, \qquad n \in \mathbb{Z}.$$

If $T > \frac{\pi}{\nu}$, then for any sequence $(c_n)_{n \in \mathbb{Z}}$, we have

$$\sum_{n} |c_{n}|^{2} \lesssim_{T,\gamma} \int_{-T}^{T} \left| \sum_{n} c_{n} e^{i\lambda_{n}t} \right|^{2} dt.$$

Arick Shao (QMUL)

Methods of Observability II

II. Multiplier methods

- Applies to all dimensions: $\Box \psi = 0$.
- Idea. Integrate by parts the RHS of

$$0 = \int_{[T_-, T_+] \times \Omega} \Box \psi \, \mathcal{S}_* \psi.$$

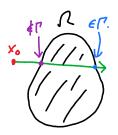
Theorem (Ho, Lions, ...)

Fix $x_0 \in \mathbb{R}^n$, and assume

$$T_+ - T_- > 2 \sup_{x \in \partial \Omega} |x - x_0|.$$

Then, for $\mathcal{L} := \square$, observability holds with:

$$\Gamma := (T_-, T_+) \times \{x \in \partial \Omega \mid (x - x_0) \cdot \gamma > 0\}.$$



Methods for Observability III

III. Carleman estimates

- Most robust technique.
- Extends multiplier methods to general \mathcal{L} .

Weighted (spacetime) integral estimates, with free real parameter.

$$\|e^{\lambda F}\nabla_{t,x}\psi\|_{L^2}^2+\|e^{\lambda F}\psi\|_{L^2}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2}^2+\dots, \qquad \lambda\gg 1.$$

• Take λ large \Rightarrow absorb lower-order terms.

Theorem (Lasiecka-Triggiani-Zhang, Zhang, ...)

Previous theorem holds for general L.

• But, for technical reasons, also requires $x_0 \notin \bar{\Omega}$.

Methods for Observability IV

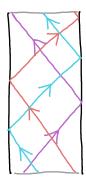
IV. Microlocal methods

- Most precise, optimal results (w.r.t. control region).
- Must also assume X, V analytic in t.

Theorem (Bardos-Lebeau-Rauch, Burq, ...)

Observability on $\Gamma \Leftrightarrow geometric\ control\ condition$.

- Each bicharacteristic (null geodesic) in $[T_-, T_+] \times \Omega$ hits Γ .
- Bicharacteristics reflect off boundary via geometric optics.
- (Le Rousseau-Lebeau-Terpolilli-Trélat) Time-dependent Γ.



Section 2

Moving Boundaries

Time-Dependent Domains

Question (Main Question)

What about time-dependent domains?

$$\mathcal{U} = \bigcup_{T_- < \tau < T_+} (\{\tau\} \times \Omega_\tau).$$

• *U* has moving boundary:

$$\mathcal{U}_b = \bigcup_{T_- < \tau < T_+} (\{\tau\} \times \delta \Omega_\tau).$$

• Can we still prove control results?

Assume boundary \mathcal{U}_b is timelike:

- \mathcal{U}_b "moves at less than wave/characteristic speed".
- \mathcal{U}_b appropriate for boundary data.

Controllability Revisited

Problem (Exact Dirichlet boundary controllability)

Given: Control region $\mathcal{Y} \subseteq \mathcal{U}_h$.

Goal: \forall *initial/final data* $(\phi_0^{\pm}, \phi_1^{\pm}) \in L^2 \times H^{-1}$:

- Find $\phi_d \in L^2(\mathcal{Y})$ that takes solution $\phi_{...}$
- ... from initial state $(\phi, \partial_t \phi)|_{t=T_-} = (\phi_0^-, \phi_1^-)...$
- ... to final state $(\phi, \partial_t \phi)|_{t=T_+} = (\phi_0^+, \phi_1^+)$.

HUM. Exact controllability \Rightarrow observability for adjoint system:

$$\|(\psi, \mathfrak{d}_t \psi)(T_+)\|_{H^1 \times L^2} \lesssim \|\mathfrak{d}_{\nu} \psi\|_{L^2(\mathcal{V})}, \qquad \psi|_{\mathcal{U}_b} = 0.$$

Some Existing Results

Existing literature is sparse.

Cannot use microlocal methods.

General n: (Only for $\mathcal{L} = \square$).

- ullet (Bardos-Chen) ${\cal U}$ expanding.
- ullet (Miranda) ${\cal U}$ self-similar, asymptotically cylindrical.

n=1: Recent works (only for $\mathcal{L}=\square$).

- $\mathcal{U}_b = \text{two lines (optimal)}$, line + curve.
- (Cui–Jiang–Wang, Sun–Li–Lu, Wang–He–Li, ...)

Missing: General results in any dimension.

The Main Estimate (Rough Statement)

Theorem (S., 2019)

Consider general \mathcal{L} on moving domain \mathcal{U} . Fix $x_0 \in \mathbb{R}^n$, and assume

$$T_+ - T_- > R_+ + R_-$$
, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$.

Then, we have observability (for adjoint equation):

$$\|(\psi, \mathfrak{d}_t \psi)(T_{\pm})\|_{H^1 \times L^2}^2 \lesssim \int_{\mathcal{Y}} |\mathfrak{d}_{\nu} \psi|^2.$$

The observation region \mathcal{Y} satisfies:

• *y* is a "much smaller", time-dependent set.

Corollary

Exact controllability (for original equation), with control region \mathcal{Y} .

Some Remarks

First result for general timelike \mathcal{U}_b and general \mathcal{L} .

- ullet Improves existing Carleman/multiplier results for static ${\cal U}.$
 - \mathcal{Y} "smaller than" $\{(x-x_0)\cdot \nu > 0\}$.
- x_0 can be outside or inside of domain.
- (Achieves GCC only when n = 1.)

Similar results for interior controllability:

- (Vaibhav Jena, 2020) Static domains, more regular controls.
- (Vaibhav Jena, in preparation) Time-dependent domains, less regular controls.

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Plan for the Proof

- **I.** Time-dependent domains.
 - Consider model problem $\mathcal{L} = \square$.
 - Multiplier methods.
- **II.** General operators \mathcal{L} .
 - Proof of Carleman estimates.
- III. Carleman \Rightarrow observability.
 - Exterior/interior observability.

Classical Multiplier Result

First, recall special case of free waves $(\mathcal{L} := \square)$.

• Main step: Integrate by parts, starting with

$$0 = \int_{[T_-,T_+]\times\Omega} \Box \psi \, \mathcal{S}^0_* \psi, \qquad \mathcal{S}^0_* \psi := (x-x_0) \cdot \nabla_x \psi + \frac{n-1}{2} \psi.$$

Combine with energy conservation ⇒

$$(T_+ - T_-)\mathcal{E}(T_\pm) \leq 2R \cdot \mathcal{E}(T_\pm) + \frac{1}{2} \int_{(T_-, T_+) \times \partial\Omega} [(\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{v}] |\partial_{\mathbf{v}} \psi|^2.$$

- $\mathcal{E}(t) = \frac{1}{2} \int_{\{t\} \times \Omega} |\nabla_{t,x} \psi|^2$.
- $R = \sup_{x \in \partial \Omega} |x x_0|$.

• Green
$$\Rightarrow T_+ - T_- > 2R$$
.

• Orange
$$\Rightarrow \Gamma := \{(x - x_0) \cdot v > 0\}.$$

Adaptation to Time-Dependent Setting

- **0.** Main issue in time-dependent domains:
 - Conservation of energy no longer holds.
 - Integrations by parts, energy estimates ⇒ additional boundary terms.
- 1. View in terms of spacetime (Minkowski) geometry.
 - Minkowski spacetime:

$$(\mathbb{R}^{1+n}, g), \qquad g := -dt^2 + dx_1^2 + \dots dx_n^2.$$

• Replace reference point x_0 by reference event (t_0, x_0) .

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

The Lorentzian Viewpoint

2. Replace classical multiplier $\mathcal{S}^0_*\psi$ by

$$\mathcal{S}_*\psi := \left[(x - x_0) \cdot \nabla_x \psi + (t - t_0) \, \partial_t \psi \right] + \frac{n - 1}{2} \psi.$$

- ∂_t -part: corresponds to energy conservation arguments.
- 3. Apply Lorentzian version of integration by parts:
 - \mathcal{N} : outward-pointing Minkowksi unit normal to \mathcal{U}_b .
 - (Euclidean normal, with t-component reversed.)

The Multiplier Result

Theorem (S., 2019)

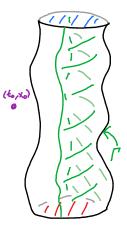
Consider $\mathcal{L} := \square$ on moving domain \mathcal{U} . Assume

$$T_+ - T_- > R_+ + R_-$$
, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$.

Then, we have observability (for adjoint problem):

$$\|(\psi, \vartheta_t \psi)(\mathit{T}_\pm)\|_{\mathit{H}^1 \times \mathit{L}^2}^2 \lesssim \int_{\mathcal{V}} |\mathcal{N} \psi|^2.$$

- N: outward-pointing Minkowski unit normal on Ub.
- $f_0 := \frac{1}{4}[|x-x_0|^2-(t-t_0)^2]$, where...
- ... t_0 satisfies $t_0 T_- > R_-$ and $T_+ t_0 > R_+$.



Arick Shao (QMUL)

Some Remarks

Proof is ≈ 2 pages.

n = 1: Recovers all existing results, and in full generality.

• Recovers optimal $T_+ - T_-$ (from GCC) for all \mathcal{U} .

General n: Handles general domains \mathcal{U} .

• Requires much smaller $T_+ - T_-$ than before (optimal in many cases).

$$\{\mathcal{N}f_0 > 0\}$$
 generalises $\{(x - x_0) \cdot \nu > 0\}$:

${\cal U}$ time-independent	$\mathcal{N} f_0 > 0 \Leftrightarrow (x - x_0) \cdot \nu > 0$
\mathcal{U} "expanding" from t_0	Need smaller ${\mathcal Y}$
${\cal U}$ "contracting" from t_0	Need larger ${\mathcal Y}$

4 L P 4 B P 4 E P 4 E P 9 C *) V (*)

Return to Carleman Estimates

Q. What about general \mathcal{L} ?

Goal. Establish global Carleman estimate:

$$\| e^{\lambda F}(\nabla_{t,x}\psi,\psi) \|_{L^2}^2 \lesssim \lambda^{-2} \| e^{\lambda F} \square \psi \|_{L^2}^2 + \| e^{\lambda F} \mathcal{N} \psi \|_{L^2(\mathcal{Y})}^2.$$

Integrate by parts the expression

$$\int (e^{\lambda F} \Box \psi) \mathcal{S}_*(e^{\lambda F} \psi)$$

• Multiplier estimate for $e^{\lambda F} \Box e^{-\lambda F}$ and $\psi^{\star} := e^{\lambda F} \psi$.

The Carleman Weight

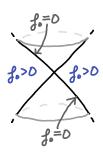
The weight $e^{\lambda F}$ is constructed from f_0 : († Not quite true)

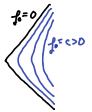
•
$$f_0 = \frac{1}{4}[|x-x_0|^2 - (t-t_0)^2].$$

 $\bullet \ e^{\lambda F} := f_0^{\lambda} \ e^{2\lambda b f_0^{1/2}}.$

Level sets of f_0 are hyperboloids:

- $f_0 = 0$: null cone about (t_0, x_0) .
- $f_0 = c > 0$: one-sheeted hyperboloids.
- $\mathcal{D}_0 := \{f_0 > 0\}$: null cone exterior.





A Novel Feature

New. $e^{\lambda F}$ vanishes at $f_0 = 0$.

- No boundary terms at $f_0 = 0$.
- Estimate supported on $\mathcal{D}_0 = \{f_0 > 0\}$.

This (roughly) yields the Carleman estimate:

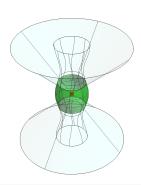
$$\|e^{\lambda F}(\nabla_{t,x}\psi,\psi)\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2+\int_{\mathcal{U}_h\cap\mathcal{D}_0}e^{2\lambda F}(\mathcal{N}\mathit{f}_0)|\mathcal{N}\psi|^2.$$

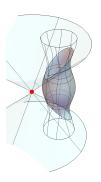
Energy inequalities ⇒ observability, with

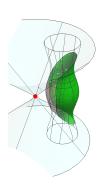
$$\mathcal{Y} := \mathcal{U}_b \cap \{ \mathcal{N} f_0 > 0 \} \cap \mathcal{D}_0.$$

- (Classical Carleman methods: $\mathcal{Y} \approx \mathcal{U}_b \cap \{\mathcal{N}f_0 > 0\}$.)
- Extra restriction of \mathcal{Y} to \mathcal{D}_0 .

Some Pictures







- Left: \mathcal{U}_b .
- Red dot: (t_0, x_0) .

- Purple: $\mathcal{U}_b \cap \mathcal{D}_0$.
- $\bullet \ \, \text{Green:} \,\, \mathcal{Y}:=\mathcal{U}_b\cap \{\mathcal{N}\textit{f}_0>0\}\cap \mathcal{D}_0.$

A Pseudoconvexity Issue

Main requirement for Carleman estimates is pseudoconvexity.

• Level sets of f_0 (barely) fail to be pseudoconvex.

Thus, can only obtain a degenerate Carleman estimate:

$$\|e^{\lambda F}\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2\lesssim \lambda^{-2}\|e^{\lambda F}\Box\psi\|_{L^2(\mathcal{U}\cap\mathcal{D}_0)}^2+\int_{\mathcal{U}_b\cap\mathcal{D}_0}e^{2\lambda F}(\mathcal{N}\mathit{f}_0)|\mathcal{N}\psi|^2.$$

- No H^1 -control for $\psi \Rightarrow$ no observability.
- Thus, cannot build weight $e^{\lambda F}$ from f_0 .

Idea. Perturb $f_0 \rightarrow f_{\varepsilon}$ such that...

• ... level sets of f_{ε} are pseudoconvex.

4 D > 4 B > 4 B > 4 B > 9 Q P

The Classical Approach

Classical Carleman observability results:

$$f_{\varepsilon} := \frac{1}{4}[|x-x_0|^2 - (1-\varepsilon)(t-t_0)^2].$$

Hyperboloids for waves with slower speed.

Drawback. Not well-adapted to characteristics of wave equation.

- $f_{\varepsilon} = 0$ no longer the null cone about (t_0, x_0) .
- Cannot obtain Carleman estimates supported on \mathcal{D}_0 .

Drawback. Only works for $(t_0, x_0) \notin \mathcal{U}$.

• (Arises from dealing with the region $\{f_0 < 0\}$.)

A Conformal Viewpoint

New idea. Perturb geometry rather than f_0 :

Consider "warped" Minkowski metric:

$$g_\epsilon := -dt^2 + dr^2 + (r + 2\epsilon f_0)^2\mathring{\gamma}, \qquad (t_0, x_0) = 0, \quad \epsilon > 0.$$

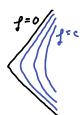
• Level sets of f_0 pseudoconvex w.r.t. g_{ε} -geometry.

Observation. (\mathcal{D}_0, g) , $(\mathcal{D}_0, g_{\varepsilon})$ conformally related.

- Pseudoconvexity is conformally invariant.
- $f_{\varepsilon} := \text{pullback of } f_0 \text{ through conformal isometry.}$

Strategy. 2 steps for proof of Carleman estimate:

- **1** Prove "warped" Carleman estimate on $(\mathcal{D}_0, g_{\varepsilon})$.
- 2 Pull "warped" Carleman estimate back to (\mathcal{D}_0, g) .



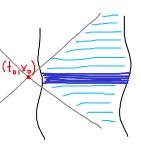
Carleman to Observability

Idea. Carleman + energy estimate \Rightarrow observability.

- But, Carleman weight $e^{\lambda F}$ vanishes on boundary of \mathcal{D}_0 .
- Cannot capture energy where $e^{\lambda F}$ vanishes.

Exterior observability. $(t_0, x_0) \notin \mathcal{U}$.

- Cross-sections of \mathcal{U} near $t=t_0$ satisfy $e^{\lambda F}\gtrsim 1$.
- \Rightarrow Carleman controls energy near $t = t_0$.



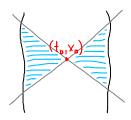
Interior Observability

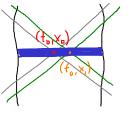
Interior observability. $(t_0, x_0) \in \mathcal{U}$.

- $e^{\lambda F}$ vanishes at every time in \mathcal{U} .
- Carleman does not control energy at any time.

Idea. Use two Carleman estimates:

- Centred at nearby points (t_0, x_0) , (t_0, x_1) .
- Sum of estimates controls energy near $t = t_0$.





The Main Observability Estimate

Theorem (S., 2019)

Consider general $\mathcal L$ on moving domain $\mathcal U$. Assume

$$T_+ - T_- > R_+ + R_-$$
, $R_\pm := \sup_{x \in \mathcal{U}_b \cap \{t = T_\pm\}} |x - x_0|$.

Then, we have observability (for adjoint problem):

$$\|(\psi, \mathfrak{d}_t \psi)(T_{\pm})\|_{H^1 \times L^2}^2 \lesssim \int_{\mathcal{Y}} |\mathcal{N}\psi|^2.$$

Y: any open subset of boundary with

$$\mathcal{Y}\supseteq\overline{\mathcal{U}_b\cap\{\mathcal{N}\mathit{f}_0>0\}\cap\mathcal{D}_0}.$$

• f_0 and t_0 as before $(t_0 - T_- > R_- \text{ and } T_+ - t_0 > R_+)$.

Remark. Any such \mathcal{Y} suffices:

• Perturbation $f_0 \to f_{\varepsilon}$ can be arbitrarily small.

Conclusions

- 1. Controllability for waves on time-dependent domains.
 - First general result.
 - Applies to general \mathcal{U} and (non-analytic) \mathcal{L} .
- 2. Best known results using Carleman methods.
 - Smaller control region (restriction to null cone exterior).
 - Leads to improved results for time-independent domains.
- **3.** Proof uses geometric ideas and intuitions.
 - Extends to geometric wave equations.

Hyperbolic PDEs

What about other (2nd order) hyperbolic PDE?

$$-\partial_t^2 + \Delta_x \qquad \Rightarrow \qquad -\partial_t^2 + \sum_{1 \le i, j \le n} a^{ij} \, \partial_i \partial_j.$$

Or, what about geometric wave equations on manifolds?

Classical methods already extend to time-independent settings:

$$\mathcal{U} := \mathbb{R} \times \Omega, \quad a^{ij} = a^{ij}(x).$$

Many results using multiplier, Carleman, and microlocal methods.

Outlook and Upcoming Work

Question

What about time-dependent settings: $a^{ij} = a^{ij}(t, x)$?

- (In other words, geometric waves on Lorentzian manifolds.)
- Open question, not explored in existing literature.

Idea. Geometric tools can be used to treat this problem.

- Use methods described for previous theorem...
- ...but on Lorentzian geometry defined by the PDE.
- (Joint work in progress with Vaibhav Jena.)