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» Consider first the Minkowski spacetime R'+3.
» Consider the (scalar) wave equation,

O¢=—-0fp+ D=1, ¢, € COR'T?),
with initial data
dli=o = ap € C(R3), Ordli=0 = a1 € C(R®).

» One has an explicit solution for ¢ — Kirchhoff’s formula —
in terms of ¢, ag, and a;.
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> Write ¢ = ¢1 + ¢2, where

> ¢ satisfies [l¢ = v, with zero initial data.
» ¢o satisfies (¢ = 0, with initial data «g, a.

» Then, we have the representation formula

472
1
4t JoB(x,1)

1 /I/ Yy, t—r)
t,x)=— ———~do,ar.
o1(t:) 4r Jo dB(x,r) r g

» B(x,r) is the ball in R® about x of radius r.

ba(t.x) = /6 oy 060 =20 ()i,
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» Main Question: Can we extend this representation to
geometric settings, i.e., to curved spacetimes?
» Curved spacetime: any general (1 + 3)-dimensional

Lorentzian manifold (M, g).
» Equation: Covariant tensorial wave equation,

Og® = g* D550 =V,

with appropriate “initial conditions”.
» Goal: representation formula

|, = F(V) + error(®) + initial data.

» Some classical applications:
1. (Y. Choquét-Bruhat) Local well-posedness of the
Einstein-vacuum equations.
2. (Chrusciel-Shatah) Global existence of the Yang-Mills
equations in curved spacetimes.
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» Infinite-order, or “Hadamard-type”, representation
formulas are more explicit and precise.

» Require infinitely many derivatives of metric g.
» Formula is only local: require geodesic convexity.
» Wave equations in curved spacetimes no longer satisfy
the strong Huygens principle.

» Representation formula at point p depends on entire
causal, rather than null, past (or future) of p.

» These severe restrictions for infinite-order formulas
often make them undesirable for nonlinear PDEs.
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» In contrast, one can also derive first-order, or
“Kirchhoff-Sobolev-type”, representation formulas.

» Again, formula is only local.
» Require only limited number of derivatives of g.
» Formula not explicit — contains recursive error terms:

|, = F(V) + error(®) + initial data.

» Representation formula can be supported on only the
null past (or future) of p.

» Require smoothness of null, rather than causal, cone.
» The price to be paid is the recursive error terms.
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» “Kirchhoff-Sobolev Parametrix” [KSP]
(Klainerman-Rodnianski, 2007): first-order
representation formula on curved spacetimes.

» Valid within null radius of injectivity.
» Supported entirely on past null cone.
» Handles covariant tensorial wave equations, using only

fully covariant (coordinate-independent) techniques.
» Extendible to wave equations on vector bundles.

» Rough statement of KSP:

4 - g(®]p, dy) — / (A w) ¢ ErA®)] +iv.

» A corresponds to r~' in Minkowski space.
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» Applications of this formula: e et Soole

1. Gauge-invariant proof of global existence of Yang-Mills.

» The classical result (Eardley-Moncrief, 1982) relies on
Cronstrém gauge.

2. Breakdown criterion for Einstein-vacuum equations
(Klainerman-Rodnianski, 2010).

» Needed pointwise bound for Riemann curvature R of
(M, g), which satisfies tensor wave equation

O,R=R-R.
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» The main result of this presentation is a generalization
of KSP, which we call [GKSP].

» Q. Why generalize KSP?

1. Want to handle systems of tensor wave equations with
(covariant) first-order terms:

n
Og®m+ Y Pm® Db =Wy, 1<m<n.

c=1

2. Removal of extraneous assumptions needed in KSP.
3. Explicit formula for initial value terms.
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» Analogous breakdown criterion for Einstein-Maxwell
equations (S., 2010)

» Curvature R and electromagnetic tensor F satisfy

O4,R = F-D?F + (R+ DF)? + l.o.,
OyDF = F - DR+ (R + DF)? + l.o..

» Right hand side has first-order terms.

> In KSP, these become part of the inhomogeneity W, but
this does not yield the necessary estimates.
» For GKSP, we must treat these terms differently.
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» Assumptions for KSP:

1. Smoothness/regularity of all past null cones in a
neighborhood of the base point p.

2. Local hyperbolicity — spacelike “initial” hypersurface
passed by null cone exactly once.

» Less assumptions for GKSP:

1. Smoothness/regularity of past null cone from p.

» (1) for KSP weakened to only null regularity at p.
» (2) for KSP is not needed at all.
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» Why can we weaken these assumptions?
» We use a different proof for GKSP.

» Proof of KSP uses an optical function u, whose level
sets form a foliation of null cones.

» Proof of KSP uses distributions: derivatives of §
composed with u.

» Proof of GKSP remains entirely on the null cone from p.

» Proof of GKSP avoids distribution theory, uses more
rigorous calculus and selective integrations by parts.
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» In both KSP and GKSP, except for ¢, W, and the first
order coefficients P (in GKSP), all other quantities are
defined only on the past null cone from p.

» Both KSP and GKSP supported on the null cone.

» In proving KSP:

» Integration by parts for all derivatives — results in terms
not defined only on null cone.
» These terms disappear due to miraculous cancellations.

> In proving GKSP:

» Integration by parts only for derivatives tangent to null
cone — thus, we never see terms off the null cone.

» The null support property is a natural consequence,
rather than a miracle.
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» GKSP given roughly as follows:

n

m=1

n
:/ [Z g(A™ W) + Err(A, &, P)| +i.v..
N=(p)

m=1

> Jg': tensor field at p.

» A™: satisfies tensorial transport equation (depending on
P and the geometry of A/~ (p)) along null generators of
N~ (p), with initial value determined by J;'.

» i.v.: initial value terms — integrals involving A and ¢ (and
first derivatives), on “lower boundary” of N~ (p).
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» Both KSP and GKSP can be directly generalized to
vector bundles over M, with a bundle metric and a
compatible bundle connection.

» Application: Handling Yang-Mills and
Einstein-Yang-Mills equations.




Foliation of the Null Cone

» Fix a foliating function f on null cone N~ (p):

> L:
> L:

» f>0,withf—0atp.
» fincreasing along past null generators.
» f foliates V'~ (p) into a family

Sy, oO<v<)

of Riemannian submanifolds, each diffeomorphic to S2.
» In particular, S; is the lower boundary of N’ (p).

(null) tangent vector field to null generators of N’ (p).

conjugate null vector field.
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The Basic Setting
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» We will deal with the following types of tensorial
quantities on N~ (p):
1. Horizontal tensors: everywhere tangent to the spheres
foliating N~ (p).

» Corresponding bundle metric and connection given by

those induced on the spheres.
2. Extrinsic tensors: tensors on M, restricted to N~ (p). o roqutnd
» Corresponding bundle metric and connection given by g.

3. Mixed tensors: generated by tensor products of
horizontal and extrinsic tensors.

» Bundle metric and connection induced accordingly.




Horizontal Tensor Fields

» Ricci coefficients: connection coefficients on N/~ (p)
that describe its geometry.

X(X’ Y) = Q(ExL, Y)7 X(Xv Y) = g(b)(L) Y),

()= 50(DxL L), u(X)=g(X,DiL)

» Modified mass aspect function:

nab~ 1 1
p=y Ca—*Xab an TGP + 2R — SR
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The Required Quantities




Extrinsic Tensor Fields

» Restrictions of g, R, &, V, P to N~ (p).
» Solutions A™ to system of transport equations.

» A™ has same rank as ®p,.

» f- A™ has initial value J' at p, where J7' is a tensor at p
of the same rank.

» A™ satisfies the following coupled system of transport
equations along the null generators of N~ (p):

- 1 1o
m_ m _ m . (o
DA™ = —S(tr)A™ + 5 ) P AC.
c=1
» Precise indices removed for notational clarity.

» Note that the first-order terms of our wave equation are
handled by altering the A™s.
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The Required Quantities




Mixed Tensor Fields

» Horizontal derivatives of extrinsic tensor fields form
mixed tensor fields.

» Example: AA™ - the “mixed horizontal Laplacian” of A™.

» This formalism justifies integration by parts operations
needed in the proofs of KSP and GKSP.

» The formalism also shows how the derivation of GKSP
can be directly extended to vector bundles.
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» GKSP can be stated more precisely as

n
_ Z/ G(A™ W)
N=(p)

+/ Err(X:X7C7ﬂ7,U’7A7¢7P7g7R)
N=(p)
+/ Init(x, A, ®, P, g).

Ss -

» For precise (but long) statement, see paper.
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» For convenience, we simplify our setting.

» Assume n = 1, i.e., only one wave equation.
» Assume no first-order terms.

» Our simplified wave equation:
Og® =WV (the setting of KSP).

» Proof of general case follows from similar ideas.
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» Begin with the quantity:

/ (A V) = / 9(A TO00),
N~ (pie) N~ (pie)

where N~ (p; €) is the portion of N~ (p) with f > e.

1. Decompose L, into mixed covariant derivatives.

2. Integrate by parts: move covariant derivatives tangent
to N~ (p) from ¢ to A.

3. Let e N\, 0; boundary terms on S, converge to

47 - g(Plp, Jp)-
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» Goal: Express L1, i.e., two covariant spacetime
derivatives of ¢, in terms of mixed covariant derivatives.

(g = £~ V(D) + 21 Y& — L (tr )V,
— ()DL + Aulo].

» Mixed covariant derivatives are covariant derivatives on
N~ (p), only in directions tangent to N~ (p).

» Convenient for integration by parts.




Step 2: Integrations by Parts

» Next, integrate by parts to move mixed derivatives ?
and Y, from & to A.

» Derivatives i in spherical directions transfer directly.

» Derivatives Y, in the tangent null direction yield
“boundary terms” — integrals over top boundary S, and
bottom boundary Ss.

» The bottom boundary terms (on Ss) form the initial
value terms in GKSP.
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» After integrations by parts, we have the following
integrals over N~ (p; €):

/ X o, / Y Do
N~ (pie) N (pie)

» We want to get rid of terms involving D, .

» However, Y is precisely the transport equation for A and
hence vanishes!

Completion of the Proof




Step 3: The Vertex Limit

> Finally, take the limit € ™\ O.
» Integrals over N~ (p; €) become integrals over N~ (p).
» These are the fundamental solution and error terms.

» Integrals over S, converge to

¢ converges to ®|p.

fA converges to Jp.

Ricci coefficients converge to their Minkowski values.
S. “converges to S2”.

vV vy vVvYyYy
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Completion of the Proof
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Thank you!
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