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Outline

Introduce two problems for nonlinear wave equations:
1 Formation of singularities:

What happens near a point where a solution blows up?

2 Unique continuation from infinity:

Does appropriate “data at infinity” determine a solution?

Survey recent results from Problem (2).

New global, nonlinear Carleman estimates.

Apply tools from Problem (2) to prove results regarding Problem (1).
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Formation of Singularities

Section 1

Formation of Singularities
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Formation of Singularities

Nonlinear Wave Equations

Consider the usual model nonlinear wave equations (NLW):

�φ+ µ|φ|p−1φ = 0, � := −∂2
t + ∆x , p > 1.

µ = −1: defocusing

µ = +1: focusing

Useful model nonlinear problem—forces dilation symmetry:

If φ(t, x) is a solution, then so is

φλ(t, x) := λ
− 2

p−1 · φ(λ−1t, λ−1x), λ > 0.

Often determines the appropriate spaces for solving the equation.
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Formation of Singularities

Local Well-Posedness

For p not too large (i.e., energy-subcritical), there is a standard local
well-posedness theory in the energy space:

Theorem (Local Well-Posedness)

Suppose 1 < p < 1 + 4/(n − 2). The Cauchy problem with initial data

φ|t=0 = φ0 ∈ H1(Rn), ∂tφ|t=0 = φ1 ∈ L2(Rn),

is locally well-posed (i.e., existence of local-in-time solution, uniqueness,
continuous dependence on initial data).

Furthermore, the time T of existence depends on ‖(φ0, φ1)‖H1×L2 .
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Formation of Singularities

Global Well-Posedness

Corollary (Continuation Criterion)

If φ, as before, exists up to time 0 < T+ <∞, but not at T+, then

lim sup
t↗T+

‖(φ(t), ∂tφ(t))‖H1×L2 = ∞.

Moreover, NLW arises from a Hamiltonian, hence has conserved “energy”:

E (t) =

∫
Rn

[
1

2
|∇t,xφ(t)|

2 −
µ

p + 1
|φ(t)|p+1

]
dx .

For the defocusing case, this implies global well-posedness.

For the focusing case, global well-posedness only for small data.
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Formation of Singularities

Blow-Up for Focusing NLW

Simple examples of blow-up come from assuming φ depends only on t:

φ∗(t, x) :=

[
2(p + 1)

p − 1

] 1
p−1

· (−t)
−2
p−1 .

For examples with finite energy: localize initial data, and use finite
speed of propagation.

Can also apply Lorentz transforms of φ∗.

Question

Generically, what happens when a solution blows up?
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Formation of Singularities

Maximal Solutions

Wave equations obey finite speed of propagation:

There is an analogous local well-posedness theory in H1
loc × L2

loc .

Can solve equation with initial data on a ball.

Again, only obstruction is the (local) H1 × L2-norm blowing up.

“Solving starting from every possible ball” yields the maximal solution.

loc. solution

loc. data

loc. solution

loc. data

max. solution

data

Arick Shao (Imperial College London) Nonlinear Waves 2 February, 2015 8 / 37



Formation of Singularities

The Blow-up Graph

Green: Space-like cone

Red: Null Cone

One can show the upper boundary of the maximal
solution forms a graph Γ = {(T (x), x) | x ∈ Rn}.

Γ is 1-Lipschitz: |T (x) − T (y)| ≤ |x − y |.

(T (x0), x0) ∈ Γ is noncharacteristic iff there is a past
spacelike cone from (T (x0), x0),

C := {(t, x) | 0 ≤ T (x0) − t ≤ c |x − x0|}, c < 1,

such that Γ intersects C only at (T (x0), x0).

Otherwise, (T (x0), x0) is called characteristic.
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Formation of Singularities

The Case n = 1

When n = 1, the question was fully answered:

The family K of ODE blow-ups φ∗ and their symmetries is universal.

Theorem (Merle, Zaag; 2007)

Suppose (0, 0) ∈ Γ .

If (0, 0) is noncharacteristic, then near (0, 0), solution approaches
some element of K.

If (0, 0) is characteristic, then near (0, 0), solution approaches a sum
of elements in K.

A generalization to higher dimensions fails, because there is no
classification of stationary solutions.
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Formation of Singularities

Higher Dimensions

In general dimensions, one still has bounds on rate of blow-up.

Theorem (Merle, Zaag; 2005)

Let 1 < p < 1 + 4/(n − 1), and suppose (0, 0) ∈ Γ .

If (0, 0) is noncharacteristic, then ∃ ε > 0 such that ∀ 0 < t � 1,

ε ≤ t
2

p−1
− n

2 ‖φ(−t)‖L2(B(0,t)) + t
2

p−1
− n

2
+1‖∇t,xφ(−t)‖L2(B(0,t)).

Moreover, given any σ ∈ (0, 1), we have that ∀ 0 < t � 1,

t
2

p−1
− n

2 ‖φ(−t)‖L2(B(0,σt)) + t
2

p−1
− n

2
+1‖∇t,xφ(−t)‖L2(B(0,σt)) ≤ Kσ.

Remark: The blow-up rate matches that of the ODE examples φ∗.
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Formation of Singularities

The Main Question

Although we know the rate of blow-up (for noncharacteristic points), we
do not yet know how blow-up occurs.

Question

If (0, 0) ∈ Γ , can one give more information about what is occurring inside
the past null cone N := {(−t, x) | 0 ≤ t ≤ |x − x0|}?

Short answer: A significant portion of the H1-norm within N must be
situated near N (and cannot be entirely situated in a smaller time cone).
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Unique Continuation from Infinity

Section 2

Unique Continuation from Infinity
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Unique Continuation from Infinity

Problem Statement

Question

Consider a linear wave, i.e., solution of

�φ+ aαDαφ+ Vφ = 0.

To what extent does “data” for φ at “infinity” (i.e., radiation field)
determine φ near infinity?

Does “vanishing at infinity” imply vanishing near infinity?

Remark: Could also apply to NLW (V := µ|φ|p−1).
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Unique Continuation from Infinity

Minkowski Infinity

R1+nr=0

ι+

ι−

ι0

I+

I−

Compactified Minkowski,

modulo spherical symmetry.

Infinity can be explicitly constructed via Penrose
compactification.

Conformally compress “distances”:

g̃M = (1 + |t − r |2)−1(1 + |t + r |2)−1gM .

(R1+n, g̃M) imbeds into Einstein cylinder, R× Sn.

Boundary of Rn+1 is interpreted as infinity.

Infinity partitioned into timelike (ι±), spacelike
(ι0), and null (I±) infinities.
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Unique Continuation from Infinity

(Rough) Theorem Statements

r=0

ι0

I+

I−

φ=0.

φ=0.

φ=0?

Theorem (Alexakis, Schlue, S.; 2013)

Assume �φ+ Vφ = 0.

V satisfies asymptotic bounds.

Assume φ and Dφ vanish at least to infinite order
on ι0 and half of both I±.

Then, φ vanishes in the interior near I±.

Theorem (Alexakis, Schlue, S.; 2014)

Analogous results apply to:

Perturbations of Minkowski spacetime.

“Positive-mass spacetimes” (including full
Schwarzschild and Kerr families).
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Unique Continuation from Infinity

Some Remarks

Can also handle first-order terms, i.e.,

�φ+ aαDαφ+ Vφ,

if we prescribe vanishing on more than half of I±.

Related results have been established via scattering theory
(Friedlander, Sá Barreto, etc.), but assume global solutions on R1+n.

For “positive mass” spacetimes, all results require vanishing only on
arbitrarily small part of I±.
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Unique Continuation from Infinity

Carleman Estimates

f=f0 f=f1 ι0

I+

I−

f=+∞

f=+∞

Carleman estimates: main analytical tool in proving
unique continuation.

Proposition (Ionescu-Klainerman, Alexakis-Schlue-S.)

Define the function f = 1
4(r

2 − t2). Then, for a > 0
and f1 > f0 > 0 sufficiently large:∫

{f0<f<f1}
f 2af −1+ε · u2 . a−1

∫
{f0<f<f1}

f 2af · |�u|2

+

∫
{f=f0}

f 2a(. . . u . . . )

+

∫
{f=f1}

f 2a(. . . u . . . ),
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Unique Continuation from Infinity

Carleman to Uniqueness I

Standard arguments yield unique continuation from Carleman estimates.

Proposition (Simplified theorem statement)

Suppose �φ ≡ 0, and φ, Dφ vanish to infinite order at f = ∞. Then,
φ ≡ 0 for sufficiently large f .

Apply estimate to u = χ · φ, where:

φ solves wave equation.

χ is a cutoff function vanishing near f = f0.

Boundary term at f = f0 vanishes.

Take limit f1 ↗ ∞ ⇒ boundary term at f = f1 vanishes:∫
{f0<f<f1}

f 2af −1+ε · χ2φ2 . a−1

∫
{f0<f<f1}

f 2af · |�(χφ)|2.
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Unique Continuation from Infinity

Carleman to Uniqueness II

Suppose χ ≡ 1 when f > f1/2. Then,∫
{f1/2<f<f1}

f 2af −1+ε · φ2 . a−1

∫
{f0<f<f1/2}

f 2af · |DχDφ+�χ · φ|2.

Comparing values of f , we can drop the f 2a-factors:∫
{f1/2<f<f1}

f −1+ε · φ2 . a−1

∫
{f0<f<f1/2}

f |DχDφ+�χ · φ|2.

Letting a ↗ ∞ implies φ ≡ 0 when f > f1/2:

This implies infinite-order vanishing requirement for φ.
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Global Nonlinear Carleman Estimates

Section 3

Global Nonlinear Carleman Estimates
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Global Nonlinear Carleman Estimates

Infinite-Order Vanishing

Question

Can one remove the infinite-order vanishing assumption?

No, there are counterexamples—when n = 3:

φ(t, x) := r−1 satisfies �φ ≡ 0 near infinity.

Then, any φk := (∇x)
kφ also satisfies �φk ≡ 0.

But, φk ’s vanish to arbitrarily high finite order, but are nonzero.

However, these φk ’s fail to be regular at r = 0:

Perhaps can do better when φ is “sufficiently global”.
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Global Nonlinear Carleman Estimates

Finite-Order Vanishing

Note that in the preceding proof:

Cutoff function χ needed to make φ vanish at f = f0.

Cutoff function χ ⇒ a ↗ ∞ ⇒ infinite-order vanishing.

Thus, if we could do away with χ, then we may be able to assume only
finite-order vanishing for φ.

Idea: globalise the Carleman estimate.

Take f0 = 0, so boundary term
∫
{f=f0}

f 2a(. . . ) vanishes naturally.

In Minkowski spacetime, this can be done.

The domain 0 < f <∞ is precisely the exterior D of a null cone.

Boundary of D hits origin (where r = 0).
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Global Nonlinear Carleman Estimates

A (Rough) Global Result

ι0

I+

I−

f=∞

f=∞

f=0

f=0

D

Theorem (Alexakis, S.; 2014)

Assume �φ+ Vφ = 0 in the full exterior D of the
null cone about the origin in R1+n.

V satisfies asymptotic bounds.
V is sufficiently L∞-small.

Assume φ, Dφ vanish any power faster than a
generic free wave,

(e.g., |φ| . r−
n−1

2
−δ along null geodesics)

on (exactly) half of I±.

Then, φ vanishes on all of D.
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Global Nonlinear Carleman Estimates

Small Potentials

Remark: Simple counterexamples show that smallness for V is necessary.

Question

Are there special wave equations for which one does not need smallness of
potential for unique continuation?

Consider now the (possibly nonlinear) wave operators

� ′φ = �φ± |φ|p−1φ, p ≥ 1.

Idea: Derive Carleman estimate for � ′ rather than �.

Can we use ±|φ|p−1φ to improve the estimate?
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Global Nonlinear Carleman Estimates

Nonlinear Carleman Estimates

±|φ|p−1φ generates additional positive (good) terms if:

Defocusing (−) NLW, p ≥ 1 + 4/(n − 1).

Focusing (+) NLW, p < 1 + 4/(n − 1).

Proposition (Alexakis, S.)

For the above NLW, the following Carleman estimate holds:∫
{0<f<f1}

f 2a · |φ|p+1 . a−1

∫
{0<f<f1}

f 2a · f |� ′φ|2

+

∫
{f=f1}

f 2a(. . . φ . . . ).

Remark: Generalizes to NLW of the form �φ± V |φ|p−1φ, if V satisfies
certain monotonicity conditions.
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Global Nonlinear Carleman Estimates

Nonlinear Results

Theorem (Alexakis, S.; 2014)

Consider on D solutions of the wave equations,

�φ+ V |φ|p+1φ = 0, 1 ≤ p < 1 +
4

n − 1
,

�φ− V |φ|p+1φ = 0, p ≥ 1 +
4

n − 1
,

where 0 < V ∈ L∞ satisfies certain monotonicity properties.

Assume φ, Dφ vanish any power faster than usual on half of I±.

Then, φ vanishes on all of D.

Remark: In particular, theorem holds when V ≡ 1.
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Application to Singularity Formation

Section 4

Application to Singularity Formation
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Application to Singularity Formation

Nonlinear Carleman Estimates

We return to the subconformal focusing NLW:

�φ+ |φ|p−1φ = 0, 1 < p < 1 +
4

n − 1
.

The nonlinear Carleman estimate yields∫
{0<f<f1}

f 2a · |φ|p+1 .
∫
{f=f1}

f 2a(. . . φ . . . ).

Estimate has no boundary term on null cone {f = 0}.

Idea: We replace region of integration {0 < f < f1} by something else?

Move boundary {f = f1} elsewhere.
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Application to Singularity Formation

A Time Cone Estimate I

Cσ

Q
DσQ DσQKσQ KσQ

Consider the timecone

Cσ := {(−t, x) | 0 < r < σt}, σ ∈ (0, 1).

Consider regions DσQ and KσQ as in the figure.

Then, the nonlinear Carleman estimate yields:∫
DσQ

f 2a
Q |φ|p+1 .

∫
KσQ

f 2a
Q (. . . φ . . . ).

fQ : translates of f by Q.

Controls integral of φ within Cσ purely by values of
φ on ∂Cσ, not in the interior.
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Application to Singularity Formation

A Time Cone Estimate II

Cσ

Q Q ′

KσQ∪K
σ
Q ′

The weight fQ vanishes at Q:

No control for φ at Q.

Idea: Suppose t(Q) = t(Q ′) = t∗, and sum two such
estimates at two separate points Q, Q ′.∫

DσQ
f 2a
Q |φ|p+1 +

∫
Dσ

Q ′

f 2a
Q ′ |φ|

p+1

.
∫
KσQ

f 2a
Q (. . . ) +

∫
Kσ

Q ′

f 2a
Q ′ (. . . )

. |t∗|
4a

∫
KσQ∪K

σ
Q ′

(. . . ).
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Application to Singularity Formation

A Time Cone Estimate III

Cσ

Rσt∗

Kσt∗

Now, DQ ∪ DQ ′ contains a slab Rσt∗ on which

fQ + fQ ′ & t∗.

Thus, letting Kσt∗ be a large enough slab on ∂C:

|t∗|
4a

∫
Rσt∗

|φ|p+1 . |t∗|
4a

∫
Kσt∗

(. . . ).

Proposition

The following estimate holds:∫
Rσt∗

|φ|p+1 .
∫
Kσt∗

(. . . ).
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Application to Singularity Formation

A Bulk Estimate

Cσ0Cσ1

Rσt∗

Integrate the cone angle σ over [σ0, σ1] ⊆ (0, 1):

Proposition

The following estimate holds:∫
Rσ0

t∗

|φ|p+1 .

sup
t ′'t∗

∫
σ0|t ′|<r<σ1|t ′|

(|∇t,xφ|
2 + t ′−2φ2)|t=t ′ .

Using Hölder and energy-type estimates, we can bound∫
Rσ0

t∗

(|∇t,xφ|
2 + t−2

∗ φ
2).
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Application to Singularity Formation

The Main Theorem

Theorem (Alexakis, S.; 2014)

Suppose φ ∈ C 2 solves

�φ+ |φ|p−1φ, 1 < p < 1 +
4

n − 1
,

and suppose φ blows up at (0, 0). If

lim sup
t∗↗0

|t∗|
2−n+ 4

p−1

∫
σ0|t∗|<r<σ1|t∗|

(|∇t,xφ|
2 + t−2

∗ φ
2)|t=t∗ < δ,

then

lim sup
t∗↗0

|t∗|
1−n+ 4

p−1

∫
Rσ0

t∗

(|∇t,xφ|
2 + t−2

∗ φ
2) . δ.
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Application to Singularity Formation

Some Remarks

1 The weights in the estimates correspond to those in the Merle-Zaag
bounds (which correspond to the ODE blow-up solutions).

2 The H1-norm cannot concentrate entirely within a past timecone
from (0, 0).

3 The theorem applies to all blow-up points, characteristic and
noncharacteristic.

4 Theorem generalizes to NLW of the form

�φ+ V |φ|p−1φ, 1 < p < 1 +
4

n − 1
, V ' 1.
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Application to Singularity Formation

Distribution of H1-Norms

Corollary

Let φ and p be as before. If

lim sup
t∗↗0

|t∗|
2−n+ 4

p−1

∫
r<σ0|t∗|

(|∇t,xφ|
2 + t−2

∗ φ
2)|t=t∗ > 0,

then

lim sup
t∗↗0

|t∗|
2−n+ 4

p−1

∫
σ0|t∗|<r<σ1|t∗|

(|∇t,xφ|
2 + t−2

∗ φ
2)|t=t∗ > 0.

In other words, some action must be happening near the null cone.
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The End

Thank you for your attention!
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