
CARDINALITY: COUNTING THE SIZE OF SETS

ARICK SHAO

1. Defining Size of Sets

Intuitively, it is clear that the set {−1, 0, 1} “contains three elements”. After all,
we can simply count the elements:

(1) −1
(2) 0
(3) 1

Similarly, everyone would agree that the set {2, 4, 6, 8, 11} “contains five elements”.
More generally, for any finite set, we have an intuitively clear idea of what it means
to count the number of elements in that set.

We now ask the following two related questions:

(1) What does it mean to “count” the number of elements in an infinite set?
Can we make sense of this at all?

(2) Can we be more precise about what it means for a set to “contain n ele-
ments”? Moreover, can our more precise concept of “size” be applicable to
infinite sets as well?

In other words, we wish to refine and expand our notion of “size” so that it remains
meaningful even for infinite sets. In particular, this would allow us to “count” the
number of elements in, say, the integers, the rational numbers, or the real numbers.

1.1. Cardinality. Perhaps counting all the rational or real numbers is a bit too
ambitious at the moment. We can first scale back to a more manageable problem:
that of defining when two sets “contain the same number of elements.”

We can define the following: Two sets A and B have the same number of elements
iff there exists a one-to-one correspondence between the elements of A and the
elements of B. In other words, for A and B have the same number of elements,
we must be able to match each element in A uniquely with some corresponding
element in B. If this holds, then one says that A and B have the same cardinality.

For example, the sets

A = {1, 2, 3}, B = {−1, 0, 1}

have the same number of elements by the above definition, since we can match the
elements of A and the elements of B as follows:

• Match “1” with “−1”.
• Match “2” with “0”.
• Match “3” with “1”.

In this finite case, the above is just a more long-winded yet more precise way of
stating the first paragraph. This now suggests the following definition: A has n
elements iff A has the same number of elements, in the above sense, as {1, 2, . . . , n}.
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However, the true beauty of the above definition, is that it applies just as well
to infinite sets! For example, by our definitions, we see that the infinite sets

N = {1, 2, 3, . . . }, N0 = {0, 1, 2, 3, . . . }

also have the same number of elements, by the following correspondence:

• Match “1” with “0”.
• Match “2” with “1”.
• Match “3” with “2”.
• And so on...

Although we are not really “counting” anymore, we have, on the other hand, ex-
tended a notion of “same size” to all sets, finite or infinite. 1

Let us now take another step back and define more precisely what we mean by
one-to-one correspondence. Let f be a function that maps every element x in A to
some element f(x) in B. We generally denote this by f : A→ B.

• We say that f is one-to-one, or injective, iff different elements of A map
to different element of B, i.e., if x, y ∈ A and x 6= y, then f(x) 6= f(y).
Alternatively, we can use the contrapositive of the above: f is injective iff
for any x, y ∈ A, if f(x) = f(y), then x = y.
• We say that f maps onto B, or f is surjective onto B, iff all the elements

of B are covered by f . In other words, for any y ∈ B, there is some x ∈ A
such that f(x) = y.
• We say that f is a one-to-one correspondence, or a bijection, onto B iff f

both is one-to-one and maps onto B.

The above expresses these “one-to-one correspondences” in terms of the abstract
but very well-defined language of functions.

2. Cardinalities of Number Systems

A first application of the above concepts is to use them to compare the relative
“sizes” of the standard sets of numbers:

• Natural numbers: N = {1, 2, 3, . . . }
• Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }
• Rational numbers: Q = {p/q | p, q ∈ Z, q 6= 0}
• Real numbers: R

A first question to ask is whether any of the above sets have the same cardinali-
ties. One can also ask if any of the above sets are “strictly greater”, in terms of
cardinality, than any of the others.

2.1. Countable Infinity. We say that a set A is countably infinite iff it has the
same cardinality as N. The terminology arises from the fact that by matching the
elements of N to those of A, we can number all the elements of A as 1, 2, 3, and so
on. In other words, although A is infinite, we can still “count” all the elements of
A, in the same way that one enumerates all the natural numbers.

1In order to “count” infinite sets in general, one needs to construct notions of ordinal numbers

and cardinal numbers, both of which are extensions of the natural numbers. This is, unfortunately,
beyond the scope of these notes.
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Exercise 1. Show that “countable infinity is the smallest infinite cardinality”, i.e.,
show that if A is countably infinite, and a subset E of A is also infinite, then E
must be countably infinite.

Next, one can consider the integers. Clearly, the integers contain more elements
than the natural numbers, since Z contains N as well as 0 and all the negative
numbers. Although one cannot immediately count the integers like one does the
natural numbers - there is no least integer from which to begin the counting - with
just a bit of creativity, one can overcome this difficulty and devise a scheme that
enumerates all the integers.

For example, one can list all the integers as follows: 0, 1,−1, 2,−2, etc.. More
formally, we construct the following one-to-one correspondence between Z and N:

• Map 0 to 1.
• Map 1 to 2.
• Map −1 to 3.
• Map 2 to 4.
• Map −2 to 5.
• And so on.

As a result, we have shown that the set Z of integers is countably infinite.
To handle the rational numbers is a bit more tricky. On one hand, Q contains Z,

plus many more elements - indeed, the rationals include all the integers as well as
the nonintegral fractions of integers. But, is Q bigger than Z in terms of set size?
We answer this question in two steps.

First, we consider the set N×N, the set of all ordered pairs of natural numbers.
Is this countable? The answer is “yes”, since one can enumerate them as follows:

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), . . .

The trick in the above scheme is to “order” the elements of N × N by the sum of
the components, i.e., we list (c, d) after (a, b) if c + d > a + b. Moreover, since
we can identify the elements of N with the elements of Z, as we have previously
demonstrated, then we can easily construct a corresponding bijection between N×N
and Z× Z. Thus, Z× Z is also countably infinite.

Our objective, though, is to deal with the rational numbers Q. How do we relate
Q to Z × Z? To accomplish this, we observe that each rational number can be
represented uniquely as a fraction p/q, where:

• p and q are integers.
• q > 0.
• p and q contain no common factors besides ±1.

In other words, we always express each such fraction as reduced to its lowest form,
and with positive denominator.

With this convention, we can now construct a one-to-one correspondence between
Q and a subset of Z×Z: we simply match p/q with the pair (p, q). Since Q is clearly
infinite, and Q is identified with a subset of a countably infinite set, then we can
conclude that the set of rational numbers Q is also countably infinite.

Exercise 2. Show that the union of a countably infinite number of countably infinite
sets is countably infinite.
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2.2. Uncountable Cardinality. So far, all the number systems we have consid-
ered have been countably infinite. Two questions in particular are still unanswered:

(1) Is the set R of real numbers countable, or is it of a strictly larger cardinality?
(2) More generally, is there a cardinality strictly greater than countable infin-

ity? Or, is countable infinity the only infinite cardinality there is?

The answers to these questions (and other related questions) follow from a rather
general type of “diagonalization” argument, generally attributed to Georg Cantor.

We first consider the specific question of the size of R. We will assume the
following well-known fact: every real number x between 0 and 1, inclusive, can be
expressed in terms of a decimal expansion

x = 0.x1x2x3 . . . , xi ∈ {0, 1, 2, . . . , 9}.
More specifically, the tenths digit of x is x1, the hundredths digit of x is x2, and so
on. Note that these decimal representations are not unique (e.g., 0.1 and 0.09̄ . . .
refer to the same number), but this will not cause any serious problems.

Suppose we have a map f mapping the natural numbers N into the real num-
bers R. Equivalently, we can also think of f as a sequence of real numbers
f(1), f(2), f(3), . . . . If we can show that such an f exists that is also a bijection
between N and R, then we demonstrate that R is countably infinite.

We express each f(i) as a decimal representation. For example,

f(1) = 0.x1
1x

1
2x

1
3 · · · = 0.243520018 . . . ,

f(2) = 0.x2
1x

2
2x

2
3 · · · = 0.353333333 . . . ,

f(3) = 0.x3
1x

3
2x

3
3 · · · = 0.314159265 . . . ,

...

f(n) = 0.xn
1x

n
2x

n
3 . . . ,

and so on. Given such a sequence f , we construct a new real number

y = 0.y1y2y3 . . .

by the following rules:

• If xn
n = 7, then let yn = 6.

• If xn
n 6= 7, then let yn = 7.

We refer to this as a diagonalization process, since yn is constructed depending on
the value of xn

n. In other words, if we write the xi
j ’s as an infinite matrix

x1
1 x1

2 x1
3 . . .

x2
1 x2

2 x2
3 . . .

x3
1 x3

2 x3
3 . . .

...
...

...
. . .

 ,

then y is constructed using the diagonal elements of this matrix. Fixing n, from
our construction, we see that yn must differ from xn

n. This means that at least one
digit of y (the digit yn) must differ from the corresponding digit (xn

n) of f(n)! 2

Let us summarize what we have accomplished. From the above diagonalization
argument, we have shown that for any function f from N into the interval [0, 1],

2Furthermore, since we define y using only 6’s and 7’s, we avoid the issue of decimal represen-
tation not being unique, since we avoid all instances of repeating 9’s and 0’s.
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we can find a real number 0 ≤ y ≤ 1 such that y differs from every f(n). In other
words, the above means that there cannot be a function mapping N onto [0, 1]. In
particular, there cannot be any bijection between N and [0, 1], so that [0, 1] does
not have the same cardinality as N. Since the set R of real numbers contains [0, 1],
we can see that R itself cannot have the same cardinality as N!

Consequently, R is infinite, but not countably infinite. In general, we refer to
sets which are infinite but not countably infinite as uncountable.

Exercise 3. Show that

• The open interval (0, 1) has the same cardinality as R.
• (0, 1) has the same cardinality as [0, 1].

Exercise 4. Let A be the set of all sequences x1, x2, . . . whose elements are either
0 or 1. 3 Using a diagonalization argument like before, show that A is uncountable.

Exercise 5. One can generalize this Cantor diagonalization argument. Let A be
any arbitrary set, and let P(A) denote the power set of A, i.e., the set of all subsets
of A. 4 Show, using a diagonalization argument, that P(A) cannot have the same
cardinality as A. Hint: One way to approach this is to think of each subset B of A
as a function fB, with domain A, such that

fB(x) =

{
1 x is in B,

0 x is not in B.

The previous exercise demonstrates that there can be no “largest” cardinality,
since for any set A, we can take its power set P(A), which has strictly larger size.
Thus, although we have a smallest infinite size, which is countable infinity, we do
not have a “largest” infinity.

Exercise 6. Show that R has the same cardinality as P(N).

3. Additional Topics

3.1. Comparison of Cardinalities. In our preceding discussions, we have con-
structed a notion of two sets “having the same size” using bijections, or one-to-one
correspondences. In particular, this notion applies just as well to infinite sets as
to finite sets. What we have subtly hinted at but have not discussed rigorously,
however, is the related notion of comparing the size of two sets. What does it mean
for one set to have more, or less, elements than another? How do we even make
formal sense of this question at all?

To address this, we make the following definition: A set X is said to have
cardinality less than or equal to than another set Y iff there exists a one-to-one
function f : X → Y . Recall that this condition of a function being one-to-one is
half of the definition of one-to-one correspondences. To make sense of our definition,
we note that if a function f : X → Y is injective, or one-to-one, then f is in fact
a one-to-one correspondence between X and some subset of Y , i.e., the range of f .
Since Y is a set containing another that has the same cardinality of X, it makes
sense to think of Y as “having cardinality greater than or equal to X”.

3Here, we treat these as simply sequences of binary digits, but not as some representation of a
real number. In other words, two sequences (xn) and (yn) are distinct if xk 6= yk for any one k.

4We can think of P(A) as being “at least as big as A”, since each element x of A can be
identified with the set {x} containing only x, which is a subset of A, i.e., an element of P(A).
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So, we now have a definition for comparing set cardinalities. The next question is
whether this makes sufficiently intuitive sense. More specifically, does this definition
of set comparison have the same basic properties as other definitions of comparisons,
such as comparisons between integers or real numbers?

Exercise 7. One well-known property of comparing numbers is the transitive prop-
erty: if x ≤ y and y ≤ z, then x ≤ z. Show that the same is true of set comparisons:
if X has cardinality less than or equal to Y , and if Y has cardinality less than or
equal to Z, then X has cardinality less than or equal to Z.

In addition, any comparison of numbers has the following antisymmetry property :
if x ≤ y and y ≤ x, then x = y. Thus, one can ask the following analogous
question for set comparison: if X has cardinality less than or equal to Y , and
if Y has cardinality less than or equal to X, then must X and Y have the same
cardinality? The (affirmative) answer to this question was given in the Bernstein-
Cantor-Schröder theorem.

The proof of this theorem, although quite short and elementary, is rather tricky
and far from trivial. The main problem here is to construct from two injections,
one from X into Y and the other from Y into X, a bijection between X and Y .

One final basic property of number comparisons is the following linear ordering
property: for any two numbers x and y, then either x ≤ y or y ≤ x. The analogous
question for set comparisons is the following: given any two sets X and Y , can
one always compare their sizes (does one always have smaller or equal cardinality
than the other)? The answer is again “yes”, but the proof of this property involves
constructing ordinal numbers, so we will not pursue it here. 5

3.2. The Continuum Hypothesis. So far, we have shown that the size of N (and
Z and Q), i.e., countable infinity, is the smallest infinite cardinality. Moreover, we
showed via Cantor’s diagonalization argument that R and P(N) have strictly larger
cardinality. One question that has not yet been answered is the following: does
there exist a set whose cardinality is strictly between that of N and that of R? In
other words, is there a cardinality that is strictly greater than countable infinity
but is strictly less than that of R?

The conjecture that the answer to the above question is “yes” is known as the
continuum hypothesis. This problem was first posed by Cantor in 1874 and became a
major unsolved problem in the following decades. The question was fully answered,
though, through two results, one in 1940 and the other in 1963.

In 1940, Kurt Gödel established that under the standard axiomatic foundations
of mathematics, one cannot prove that the continuum hypothesis is false. At first,
this may seem to be convincing evidence for the continuum hypothesis being true.
However, in 1963, Paul Cohen showed that one also cannot prove that the contin-
uum hypothesis is true, based on the same foundations of mathematics.

Consequently, one cannot possibly establish via proof whether the continuum
hypothesis holds or not. In other words, the continuum hypothesis is independent
of the founding axioms of mathematics! In order to prove any conclusive statement
regarding the continuum hypothesis, one would hence need additional axioms, that
is, one would require additional fundamental assumptions on our abstract math-
ematical universe. This provides a concrete example of a mathematical question
that cannot be answered under the current standard foundational framework.

5Actually, this property for set comparison is equivalent to the axiom of choice!
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Another famous result that is more general, and also more depressing, is the
following incompleteness theorem of Gödel (proved in 1931), which can be (very)
roughly stated as follows: in any sufficiently complex formal theory (which would
include any foundational theory of mathematics), there exist statements which are
true but cannot be proved. This demonstrates a fundamental obstruction toward
being able to “understand everything in our mathematical universe”.

The truth or falseness of the continuum hypothesis described above is one exam-
ple of such an unprovable statement. One can imagine imposing at some point an
additional “reasonable” axiom to our universe, so that the question of the contin-
uum hypothesis can be settled. However, Gödel’s incompleteness theorem implies,
rather depressingly, that no matter how many axioms one appends, there will al-
ways be some true statement that cannot possibly be proved.
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