
EXTENDING CALCULUS: LIMITS

ARICK SHAO

1. Limits in General Spaces

In first-year calculus, one encounters to some extent the basic definition of lim-
its of functions. This is generally referred to as “delta-epsilon”, due to the nearly
unanimous choice of Greek letters used in this definition. Here, we will discuss how
one generalizes such definitions of limits to other spaces besides the real numbers.
Examples of “other spaces” include R2, R3, and Rn for general n – higher dimen-
sional spaces which are the settings of multivariable calculus – as well as many
infinite-dimensional spaces (such as certain spaces of functions).

Consider first the familiar case of the real number line R (i.e., from single-
variable calculus). This formal notion of limits and all the concepts that follow
from this provide a vast analytical toolbox that one can use to study the real
numbers and various functions involving real numbers. By generalizing this notion
of limits, then one can essentially apply this “toolbox” in multi-dimensional or
even infinite-dimensional settings. In many areas of physics and mathematics (e.g.,
quantum mechanics, partial differential equations), these notions of “limits” and
“convergence” for infinite-dimensional spaces are fundamental.

1.1. δ’s and ε’s. First, we consider a function

f : (a, b)→ R,

and we fix a point x0 ∈ [a, b], that is, on (a, b) or its boundary. We say that

lim
x→x0

f(x) = L

iff for any ε > 0, there exists δ > 0 such that if

x ∈ (a, b), 0 < |x− x0| < δ,

then
|f(x)− L| < ε.

In less formal terms, this means that f(x) can become as close as one wants to L,
as long as one takes x ∈ (a, b) close enough to x0.

Similarly, for a sequence x1, x2, . . . , we say that

lim
n→∞

xn = L

iff for any ε > 0, there exists some N0 ∈ N such that if n ≥ N0, then

|xn − L| < ε.

The intuition is more or less the same. One can make xn as close as one wants to
L, as long as one takes n to be sufficiently large.

These are the familiar definitions found, if not adequately discussed, in nearly
every calculus textbook. In fact, they form much of the foundations for all of
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calculus. As these are rather powerful concepts, one would like to extend and
apply them to other potentially more interesting situations.

To see how one might extend these definitions, we look first at the intuitions
involved. The statements 0 < |x − x0| < δ and |f(x) − L| < ε are generally
interpreted as x being “δ-close” to x0 and f(x) being “ε-close” to L. Indeed, the
absolute value of the difference of two numbers represents precisely the distance
between these numbers on the real line. In fact, in our definitions of limits, the
only intuition about |x − x0| and |f(x) − L|, for instance, that comes into play is
the observation that they represent the distances between x and x0 and between
f(x) and L, respectively. This suggests that our definitions of limits ought to be
sensible if we replace the real number line and these absolute values of differences
by some other “space” and some other “measure of distance” on that “space”.

Consider, for example, the usual three-dimensional space,

R3 = {(x, y, z)|x, y, z ∈ R}.

We can think of each element of R3, i.e., an ordered triple of real numbers, as a
positional vector. Given two such vectors

r1 = (x1, y1, z1), r2 = (x2, y2, z2),

then the distance between them is the length of the line segment connecting the
two points. This is precisely the magnitude of the difference of the vectors:

|r2 − r1| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Thus, on the “space” R3, we have a “measure of distance” given by the above.
This is, of course, directly extendible to the space Rn of n-tuples (of real numbers)

for any n. In other words, on the space Rn, we have the “measure of distance”

d(r1, r2) = |r2 − r1|, r1, r2 ∈ Rn.

Let us now take these “spaces” and “distances” back to our definitions of limits.
Consider now a sequence r1, r2, . . . of points in, say, R3. We then define

lim
n→∞

rn = L, L ∈ R3,

to mean that for any ε > 0, there exists some N0 ∈ N such that if n ≥ N0, then

|rn − L| < ε.

The intuition is exactly the same as before – one can make rn as close as one wants
to L, as long as one takes n to be sufficiently large. Observe also that there is
nothing special about the dimension 3, as this definition works just the same when
“3” is replaced by any natural number n.

Similarly, for limits of functions, let D ⊆ Rm be some region in Rm, let

F : D → Rn, r0 ∈ D.

We say that 1

lim
r→r0

F(r) = L.

iff for any ε > 0, there exists δ > 0 such that if

r ∈ D, 0 < |r− r0| < δ,

1Note this definition still works if r0 is on the boundary of D.
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then
|F(r)− L| < ε.

The intuition is once again unchanged – F(r) can become as close as one wants to
L, as long as one takes r ∈ D close enough to r0.

Even if one avoids the technical intricacies of these “δ-ε” or “N0-ε” definitions,
which can seem rather intimidating at first, the above discussion still remains ap-
plicable. When one speaks of “limits”, of something “approaching” or “converging
to” something, one refers to some measures of distance shrinking closer and closer
to zero. Other properties of the real line provide only extraneous detail. Thus, the
above discussion of replacing the distance on R by other distances on other spaces
remains as relevant even in the context of purely informal discussions.

Exercise 1. Do the following limits exist? If so, what are the limits? Why?

lim
(x,y)→(0,0)

2x2 − y2

x2 + y2
, lim

(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
,

lim
n→∞

(
2−n, 1− 1

n
sinn,

3n2 + 4n

−2n2 + 2

)
, lim

(x,y,z)→(1,3,4)

(
y,
xz − 4x+ 2z − 8

z − 4

)
,

lim
(x,y)→(0,0)

x2 sin y

x2 + y2
, lim

(x,y)→(0,0)

x2 cos y

x2 + y2
,

lim
(x,y)→(−1,1)

e−xy cos(x+ y), lim
n→∞

(√
n2 + n− n

)

Since the notion of “distance” extends far beyond just Rn, there is no need for
us to consider only these Rn when we speak of limits. For example, we can consider
settings which are less “flat”, like the sphere

S2 = {(x, y, z) | x2 + y2 + z2 = 1}.
One can similarly define the distance between two points on the sphere. 2 Thus, as
before, one can discuss limits of functions defined on the sphere, and of functions
which take values on the sphere. The same can be said of other curved surfaces
and also of higher (or lower) dimensional figures.

1.2. Metric Spaces. Next, we take a step back and describe what, exactly, we
mean by “distance”. Thus far, we have left this notion undefined and appealed
instead to our intuitions. However, as we deal with other settings that are more
difficult or impossible to visualize, such as “infinite-dimensional” spaces, we will
want to have a more formal characterization of “distance.” In abstract mathematics,
the concept that achieves this purpose is that of a metric space.

Consider some set X. Let X × X denote the set of ordered pairs, with each
component being an element of X, i.e.,

X ×X = {(x, y) | x, y ∈ X}.
A nonnegative real-valued function

d : X ×X → [0,∞)

is called a metric on X iff the following conditions hold:

(1) d(x, y) = 0 if and only if x = y, for any x, y ∈ X.

2This distance is the length of the shorter arc on the great circle that contains the two points.
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(2) d(x, y) = d(y, x) for any x, y ∈ X.
(3) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

If d is such a metric, then the pair (X, d) is generally referred to as a metric space.
Intuitively, d(x, y) represents the “distance” from x to y, while X is the “space” of
all things for which this distance d can be measured.

These three conditions comprising the definition of a metric represent “reason-
able” criteria that any measure of distance should satisfy. The condition (1) simply
states that two points contain no distance between them if and only if they are one
and the same. The symmetry condition (2) can be interpreted as that the distance
traveled from x to y must be the same as the distance traveled from y to x. Finally,
the triangle inequality (3) states that one cannot shorten the distance via additional
detours – if one goes from x to y and then from y to z, this combined distance has
to be at least as long the direct distance between x and z.

For example, for any n ∈ N, then the function

d(r1, r2) = |r1 − r2|, r1, r2 ∈ Rn

is a metric on Rn. The aforementioned distance on the sphere S2 is also a metric.
Analogous distances on curves, curved surfaces, and higher-dimensional analogues
(generally called manifolds) are also metrics, though a fair amount of differential
geometry is required in order to prove this.

Thus far, we have still restricted ourselves to finite-dimensional objects. With a
firmly defined notion of “distance”, though, we can now move far beyond this. The
main case of interest in mathematical analysis (and in mathematical physics) will
be spaces of functions. In other words, we will want to analyze families of functions
using many of the same tools that we have used to analyze real numbers.

For example, consider a closed interval [a, b] in the real line, and let C[a, b] denote
the set of all continuous functions from [a, b] into R, i.e., of the form

f : [a, b]→ R.

The extreme value theorem from basic calculus implies that any f ∈ C[a, b] must be
bounded, and that f must attain its maximum and minimum values. 3 The actual
proof of this requires quite a bit of work, but we will take this fact for granted here.

With the above in mind, we can define the following metric on C[a, b]: given
continuous functions f, g : [a, b]→ R, we define

d∞(f, g) = sup
x∈[a,b]

|f(x)− g(x)| = max
x∈[a,b]

|f(x)− g(x)|.

Some other commonly used “distances” for spaces of functions are listed below:

(1) The “square integral” distance:

d2(f, g) =

(∫ b

a

|f(x)− g(x)|2dx

) 1
2

, f, g : [a, b]→ R.

The corresponding “space” L2[a, b] is (roughly) that of all square integrable
real-valued functions on [a, b], i.e., functions f : [a, b]→ R such that∫ b

a

|f(x)|2dx <∞.

3In other words, there is some x0 ∈ [a, b] with f(x0) = supx∈[a,b] f(x), and similarly for inf.
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(2) The integral distance:

d1(f, g) =

∫ b

a

|f(x)− g(x)|dx, f, g : [a, b]→ R.

The corresponding “space” L1[a, b] is (again roughly) that of all integrable
real-valued functions on [a, b], i.e., functions f : [a, b]→ R such that∫ b

a

|f(x)|dx <∞.

(3) The “squared summation distance” for sequences:

d∗2((xn), (yn)) =

( ∞∑
n=1

|xn − yn|2
) 1

2

, (xn), (yn) are real-valued sequences.

The corresponding “space” `2 is defined similarly to the preceding examples.

These are only some of the most basic examples. In practice, many other spaces of
functions are used in many different areas of study.

Exercise 2. Show that this function d∞ is in fact a metric on C[a, b].

1.3. Abstract Limits. We have already established that all we need in order to
have a viable notion of limits is some notion of “distance”. Moreover, in our prelim-
inary discussions involving Rn, we already described how this abstract definition of
limits would be constructed. Thus, all we need to do here is to plug in our abstract
metric spaces into our existing intuitions.

Let (X, dX) be a metric space (i.e., dX : X × X → [0,∞) is a metric on X).
Suppose (xn) is a sequence, with each element in X. Then, we write

lim
n→∞

xn = z, z ∈ X,

iff for any ε > 0, there exists some N0 ∈ N such that for any n ≥ N0,

dX(xn, z) < ε.

For example, if we plug in Rn for X and the standard distance in Rn for dX , then
we obtain the previous definition of limits for Rn-valued sequences.

Exercise 3. Do the following sequences in C[0, 1] converge (with respect to the
metric d∞)? If so, then what is the limit?

(1) fn : [0, 1]→ R, where fn(x) = n−1 sinx.
(2) fn : [0, 1]→ R, where fn(x) = xn.

Exercise 4. Consider the n-tuples

x = (x1, x2, . . . , xn) ∈ Rn, y = (y1, y2, . . . , yn) ∈ Rn,

and consider the following functions:

d1(x,y) =

n∑
k=1

|xk − yk|,

d2(x,y) =

√√√√ n∑
k=1

|xk − yk|2,

d∞(x,y) =
n

max
k=1
|xk − yk|.
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Show that d1, d2, and d∞ are metrics on Rn (note d2 is the usual distance on Rn).
Furthermore, show that if a sequence (xn) in Rn converges to y with respect to one
of these metrics, then it also converges to y with respect to the other two metrics.

Similarly, we say that (xn) is a Cauchy sequence iff for any ε > 0, there exists
N0 ∈ N such that for any n,m ≥ N0, we have

dX(xn, xm) < ε.

Then, the metric space (X, dX) is called complete iff every Cauchy sequence in X
actually has a (dX -)limit in X. This is the full formalization of the definition of
completeness that was previously discussed.

One can show (with some effort) that the spaces C[a, b], L2[a, b], L1[a, b], `2 de-
scribed in the preceding section, with their associated metrics, form complete metric
spaces. The first case, for example, is incredibly important in the basic theory of
ordinary differential equations. One can generate a sequence of “approximate solu-
tions” to some differential equation, with each element of this sequence in C[a, b].
By showing that this sequence is a Cauchy sequence, then one knows that it in fact
has a limit, which we hope would be the actual solution to the equation. This is
an extremely robust technique for proving the existence of solutions to differential
equations, even when such solutions cannot be solved explicitly!

The definition for limits of functions is once again analogous. Let (Y, dY ) be
another metric space, and let f : X → Y . Given x0 ∈ X and y0 ∈ Y , we say that

lim
x→x0

f(x) = y0

iff for any ε > 0, there exists δ > 0 such that if

0 < dX(x, x0) < δ, x ∈ X,

then
dY (f(x), y0) < ε.

Once again, the intuitions behind limits in R and also in Rn can be ported directly
to this abstract metric space setting.

Exercise 5. From your knowledge of limits in R, what would be a reasonable defi-
nition for a function f : X → Y on metric spaces to be continuous?

Exercise 6. Prove whether the following functions are continuous or not:

f : R2 → R, f(x, y) =

{
xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

g : R2 → R, g(x, y) =

{
x2y

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Exercise 7. Are the following functions continuous?

E : C[−1, 1]→ R, E(f) = f(0),

I : C[−1, 1]→ R, I(f) =

∫ 1

−1
f(x)dx.

References

1. W. Rudin, Principles of mathematical analysis, McGraw-Hill, Inc., 1976.
2. J. Stewart, Multivariable calculus, 7 ed., Brooks/Cole, 2012.


