
Fall 2012 MAT334 Exam 2
Solutions (LEC0101)

Problem 1. Let the curve γ be the positively-oriented boundary of the square
with corners at 2 + 2i, −2 + 2i, −2− 2i, and 2− 2i. Evaluate the following:∫

γ

ez

z2 + 2z − 3
dz.

Solution. First, the integrand can be factored as

ez

z2 + 2z − 3
=

ez

(z + 3)(z − 1)
.

Thus, the poles of the integrand lie at z0 = −3 and z0 = 1. Since −3 lies outside
γ and 1 lies within γ, we can write the above integral as∫

γ

ez

z2 + 2z − 3
dz =

∫
γ

ez

z+3

z − 1
dz =

∫
γ

f(z)

z − 1
dz,

where this function f is holomorphic in some convex domain D that contains γ
and its interior. As a result, we can apply the Cauchy formula:∫

γ

ez

z2 + 2z − 3
dz = 2πi · f(1) =

1

2
eπi.

Problem 2. For what z ∈ C is the function f(z) = |z|2 (complex) differen-
tiable? For what z ∈ C is f not differentiable?

Solution. The most systematic method is with the Cauchy-Riemann equations.
Letting

f(z) = u(x, y) + iv(x, y), z = x+ iy,

we see that u(x, y) = x2 + y2 and v(x, y) = 0. Thus,

∂xu(x, y) = 2x, ∂yu(x, y) = 2y, ∂xv(x, y) = 0, ∂yv(x, y) = 0.

Since u and v are both continuously differentiable, f is complex differentiable
if and only if ∂xu = ∂yv and ∂xv = −∂yu. This is true if and only if x = y = 0,
i.e., when z = 0. Thus, f is differentiable when z = 0, and f is not differentiable
for any other z.

Remark. One can also solve this using the definition of differentiability. Fix
z ∈ C, and consider the limit

lim
h→0

f(z + h)− f(z)

h
= lim
h→0

|z + h|2 − |z|2

h

= lim
h→0

zh̄+ z̄h

h

= z + z̄ lim
h→0

h̄

h
.
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From an example in class (or from the first midterm!), the limit of h̄/h as h→ 0
does not exist. Thus, the derivative f ′(z) exists if and only if z̄ = 0, i.e., if and
only if z = 0.

Problem 3. Suppose f and g are holomorphic functions such that:

• f has a zero of order m > 0 at z0 ∈ C.

• g has a pole of order m at z0.

Prove that f · g can be analytically extended to a nonzero value at z0.

Solution. Since f has a zero of order m at z0, we can write

f(z) = (z − z0)mF (z),

where F is some holomorphic function (in particular at z0) that is nonzero at
z0. Similarly, since g has a pole of order m at z0, we can write

g(z) = (z − z0)−mG(z),

where G is some holomorphic function (near and at z0) that is nonzero at z0.
As a result, f(z)g(z) = F (z)G(z) when z 6= z0, and the right-hand side

provides an analytic extension of f · g to z0. Moreover, since neither F nor G
vanish at z0, then F (z0)G(z0) 6= 0.

Problem 4. Let

f(z) =
(z + 2) sin z

(ez − 1)2
.

Show that f has a pole of order 1 at z = 0, and then compute Res(f ; 0).

Solution. Note the following:

• z + 2 is an entire function, whose value at z = 0 is 2.

• From the Taylor series for sin, we can write

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z

∞∑
n=0

(−1)n
z2n

(2n+ 1)!
= zg(z),

where g(z) is entire, and where g(0) = 1.

• From the Taylor series for exp, we can write

ez − 1 =

∞∑
n=0

zn

n!
− 1 =

∞∑
n=1

zn

n!
= z

∞∑
n=0

zn

(n+ 1)!
= zh(z),

where h(z) is entire, and where h(0) = 1.
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As a result, we can write

f(z) =
z

z2
(z + 2)g(z)

[h(z)]2
=

1

z

(z + 2)g(z)

[h(z)]2
.

Since the fraction (z + 2)g(z)/[h(z)]2 is entire and nonzero at z = 0, it follows
from this representation that f has a pole of order 1 at z = 0.

Finally, to compute the residue, since the pole at z = 0 has order 1,

Res(f ; 0) = zf(z)|z=0 =
(0 + 2)g(0)

[h(0)]2
= 2.

Remark. There is no need to deal with the full Taylor series for sin z and ez−1.
For example, one can also recall that

g(0) = sin′ 0 = 1, h(0) =
d

dz
(ez − 1)|z=0 = 1.

The above formula for the residue was given in class. This can also be derived
directly. Since F (z) = (z + 2)g(z)/[h(z)]2 is entire, it has a power series

F (z) =

∞∑
n=0

cnz
n.

As a result,

f(z) = z−1F (z) = c0z
−1 +

∞∑
n=0

cn+1z
n,

and hence
Res(f ; 0) = c0 = F (0) = 2.

The residue can also be computed directly using the Cauchy formula.

Problem 5. Let γ be any smooth piecewise continuous curve from −i to i that
does not pass through the positive real axis [0,∞). Compute∫

γ

1

z
dz.

(Hint: The answer is not +πi).

Solution. The main idea is to use the fundamental theorem of calculus, since
z−1 has the logarithm as its antiderivative. The caveat, however, is that this
log has to be holomorphic wherever the curve γ is defined. Since γ is assumed
to not cross the positive real axis, we should choose a branch of log which fails
to be holomorphic (and continuous) on the positive real axis. For example, we
can use the branch

L(z) = ln z + i arg z, 0 ≤ arg z < 2π.
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Using L and the fundamental theorem of calculus,∫
γ

1

z
dz =

∫
γ

L′(z)dz

= L(i)− L(−i)

=
(

ln i+
π

2
i
)
−
[
ln(−i) +

3π

2
i

]
= −πi.

Remark. Since the principal logarithm (Log) is not continuous on the negative
real axis, where γ crosses, we cannot use this as the “correct” antiderivative of
z−1. Indeed, using Log yields the incorrect answer πi.
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