
Spring 2014 MAT 336 Exam 2

These are the solutions to all the questions on Midterm 2.

Problem 1. Give an example of a continuous function f : R2 → R and an
open subset U ⊆ R2 such that f(U) = {f(x) | x ∈ U} is not open.

Remark. There are many, many examples. Below, we run with the simplest.

Solution. Let f(x) = 0, and let U = R2 (which is open). The f(U) = {0},
which is not open (any open ball centered at 0 contains more than just 0).

Problem 2. Show that ln(1 + x) ≤ x for any x ≥ 0. Hint: One possibility
is to find a way to apply the mean value theorem.

Solution. We apply the mean value theorem to f(x) = ln(1 + x), which is
differentiable for all x ∈ (−1,∞). In particular, applying at x0 = 0, we have

ln(1 + x) = f(x)− f(0) = f ′(x′) · (x− 0),

for some x′ ∈ [0, x]. Noting that

f ′(x′) =
1

1 + x′
∈ (0, 1],

we see that

ln(1 + x) =
1

1 + x′
· x ≤ x.

Problem 3. Let f : R → R be continuous, and suppose f is periodic, that
is, there is some d > 0 such that f(x + d) = f(x) for all x ∈ R. Show that
f achieves its maximum value (more specifically, show there is some x0 ∈ R
such that f(x0) ≥ f(x) for all x ∈ R).

Solution. Consider the restriction of f to [0, d], i.e.,

g : [0, d]→ R, g(x) = f(x).

Since g is continuous and [0, d] is compact (by the Heine-Borel theorem), g
achieves its maximum at some x0 ∈ [0, d].

Now, for any x ∈ R, we can write x = md + x′, where m ∈ Z and
x′ ∈ [0, d). Thus, by the periodicity of f , we have that

f(x) = f(x′) = g(x′) ≤ g(x0) = f(x0).

In other words, f also achieves its maximum at x0 (as well as at x0 + md).
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Problem 4. Suppose f : R→ R satisfies that

|f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R. Prove that f is a constant function.

Solution. Rearranging the above inequality, we see that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y|, x, y ∈ R, x 6= y.

Fixing y and taking limits x→ y on both sides of the inequality yields

|f ′(y)| ≤ 0.

Since the above holds for all y ∈ R, then f ′ vanishes everywhere. As a result,
(by the mean value theorem,) f is everywhere constant.

Problem 5. Consider the set A = {(x, sin 1
x
) ∈ R2 | x > 0} ⊆ R2. Find all

the limit points of A.

Solution. Clearly, every point (x, y) ∈ A is a limit point of A (since the
constant sequence (xn, yn) = (x, y) trivially converges to (x, y)).

In addition, we claim that every point (0, y), where y ∈ [−1, 1], is a limit
point of A. Since sin is periodic, there is a sequence xn going to +∞, with
sinxn = y. Then, (x−1n , sinxn) is a sequence in A which converges to (0, y).

In fact, the set of limit points of A is precisely

Ā = A ∪ {(0, y) | y ∈ [−1, 1]}.

Remark. If you’re feeling extra ambitious, you can also show that any point
not in Ā, as defined above, is not a limit point of A. For example, since for
any sequence (xn, yn) ∈ A, we have that xn > 0 and that |yn| ≤ 1, it follows
that (x, y) cannot be a limit point of A if either x < 0 or if |y| > 1.

Furthermore, for points (x, y) 6∈ A satisfying x > 0, we can use, for
example, Exercise 5.3.I in the textbook (which was a homework problem) to
find a ball B((x, y), r) that avoids A. As a result, since (x, y) is of a positive
distance from A, no sequence in A can approach (x, y).

The above cases combined cover all points not in Ā.
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